[kernel][cm9 ][E400] Jeeiko Kernel 0.1 - Optimus L3, L5, L7 Android Development

Hi Friends , I bring new custom kernel for cm9
**Features**
1-. Overlock to 1.1 GHZ
2-. Add New 4 Governors
3-. Support SDMERGE
**Governors**
1-. Lazy
2-. LionHeart
3-. SavagedZe
4-.SmartassV2
1: Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
2: Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source.
The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
3: SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
4: SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
How to Install?
Easy
1. download Zip flasheable
2. Put in sd card
3. Reboot in recovery
4. Not wipes (optional)
5. Install zip from sd card
6. Flash Jeeiko Kernel .
<MODERATOR EDITED - LINK REMOVED>

thank you for new sdmerge kernel. any one tried this with cm9 sdmerge. i have a fear 1.1G seem to be too high and not stable.

kien_vip said:
thank you for new sdmerge kernel. any one tried this with cm9 sdmerge. i have a fear 1.1G seem to be too high and not stable.
Click to expand...
Click to collapse
I tried it yesterday and it goes good if i stay maximum at 1050mhz...if you try to go at higher frequency it lags and goes slow...

Sources for Kernel?
It seems good but , we need some proof

When the OP has kernel source ready to post, he is welcome to report the thread and request it be re-opened.
Until that time, thread is closed.
I've also cleaned the thread of non-development chatter and arguing... please ensure there's no repeat of this.

Related

[Q] Best CPU Governnor and I/O Scheduler for Live with Walkman(WT19i)

I bought a new android phone which is the Live with Walkman(WT19i) here in the Philippines, and I'm loving it, except for the battery life
Live with Walkman is known for its poor battery life(which i found here in xda forums), probably because of the crapware software installed in stock ROM and battery which is the EP500 rated at 3.7v 1200mAh. Some users, like me, have a battery capacity of 1160mAh which really suck(probably country/region specific), especially when running with the stock ROM from Sony. So I unlocked my bootloader flashed my kernel to Rage kernel v2.6, wipe all data and cache partitions and installed HYBROM v15 from CWM, so far so good. I installed No frills CPU Control but I'm having a hard time which CPU governor and I/O scheduler to choose. Some people say that I should choose SmartAssv2 and Noop, some say I should choose Conservative and Noop or SIO.
Installed Applications:
Angry Birds(RIO, Seasons, Space)
ASTRO File manager
AdFree
MapDroyd
Facebook(auto sync is OFF)
YouTube
Skype(auto sync is OFF)
oh, and BTW, I integrate these two apps via WinRAR which does not exist in HYBROM v15.
Google Maps
Google Search Widget
-Screen Brightness = 40%(I only set it to max when outdoors)
-Mobile Data network = OFF (using GSM only, I'm using WiFi for browsing, downloading and updating apps)
-AutoSync is off
-I only turn on WiFi when needed
No Frills CPU (My configuration):
Min:122Mhz
Max:1.024Ghz
Governor:SmartAssv2
I/O Scheduler:Noop
Apply on boot: checked
So my question is whats the best CPU Governor and I/O Scheduler combination for the Live with Walkman(assuming your using Rage kernel ang hybrom ROM) providing a balanced cpu performance and battery life for any casual user?
For your CPU config, I suggest increasing the minimum frequency to 320-480ish; because around that frequency it consumes more or less the same voltage. If you set it too low, you may end up using more power because your phone may struggle to process services (caused by low frequency). Reference here -it may be on another device forum but that's applicable on other phones-
IIRC smartassv2 will be defaulting to a low frequency when the phone's screen is off so I think it's good to use it, for your brightness it's ok but I use around 20-30% brightness when outdoors
thanks bro!
sir,
android noob question...
when you installed hybrom on the wt19i,
does the walkman button still work? and does it still have loudspeaker functionality?
im really hesistant in rooting or installing custom rom on mine...
thanks!
use either scary governor or ondemand and about the i/o bfq or sio.
buy a system tuner pro then config your startups and auto kill. mine is -1% / 4 hours deepsleep. min. 122Mhz - max. 1.5Ghz..
melander said:
sir,
android noob question...
when you installed hybrom on the wt19i,
does the walkman button still work? and does it still have loudspeaker functionality?
im really hesistant in rooting or installing custom rom on mine...
thanks!
Click to expand...
Click to collapse
walkman, and walkman button still works, and speakers are still loud and in stereo
and the bonus part, you get DSP manager, which enhances your sound and music experience further
xachiel said:
use either scary governor or ondemand and about the i/o bfq or sio.
buy a system tuner pro then config your startups and auto kill. mine is -1% / 4 hours deepsleep. min. 122Mhz - max. 1.5Ghz..
Click to expand...
Click to collapse
autokill?? I thought killing apps and processes is bad and since killed apps will restart again and will consume more battery life
kevincaja said:
autokill?? I thought killing apps and processes is bad and since killed apps will restart again and will consume more battery life
Click to expand...
Click to collapse
its a memory auto killer. not a task killer. and use gemini app to config auto-run your apps so they dont run at the background
kevincaja said:
walkman, and walkman button still works, and speakers are still loud and in stereo
and the bonus part, you get DSP manager, which enhances your sound and music experience further
Click to expand...
Click to collapse
thanks for the reply sir,
can you please share the steps you did to install the kernel and rom???
im really interested in installing a custom rom on mine...
melander said:
thanks for the reply sir,
can you please share the steps you did to install the kernel and rom???
im really interested in installing a custom rom on mine...
Click to expand...
Click to collapse
First, download all the necessary files:
this thread contains all the necessary files to unlock your bootloader, at the same time flash a custom kernel that contains ClockWorkMod(CWM) and root.
they also include download for the stock kernel with CMW and root but no overclocking, extra cpu governors and I/O scheduler features:
http://forum.xda-developers.com/showthread.php?t=1560613
if you want to overclock your phone, or improve battery life, download rage kernel:
http://forum.xda-developers.com/showthread.php?t=1398910
then download hybrom v15:
http://forum.xda-developers.com/showthread.php?t=1373435
well that's about it, be careful when flashing as you can easily brick your phone.
follow the instruction in the threads I've given to you.
You install custom ROMs via the ClockWorkMod, the only thing you flash via your computer is the kernel. In case your stuck in bootloop, you can always reflash to the stock ROM of sony ericsson.
Stock ROM for WT19i:
http://dl.dropbox.com/u/17122099/Sony Tools/WT19i_4.0.2.A.0.62__1254-1889.ftf
then flash it with flashtool or using the sofware on this thread.
NOTE:
-Rage kernel has a different way of entering in ClockWorkMod, turn your phone on. As it boots up, as soon you see the LED indicator turns blue or as soon as the boot logo brightens up, immediately press the home key to enter ClockWorkMod.
-in the stock kernel with CMW and root, the LED indicator is always off. Turn your phone on. Press the on-off key once or twice as soon as the b logo gets brighter, to enter in ClockWorkMod.
kevincaja said:
thanks bro!
Click to expand...
Click to collapse
I kinda disagree.If i remember correctly your phone has minimum frequency of 245 with stock kernel so why increasing?I use my mini with rage kernel at 122-1024 smartassV2 governor never had any problem.I use profile for screen off settings are 122-368.Battery consumption is 0.4-0.5% over night not in flight mode and cpu spy shows 99% of that time cpu is sitting on 122 MHz.So unless your phone is heavy loaded with apps that constantly require cpu power i recommend trying my settings and test over night, you got nothing to loose after all
kevincaja said:
First, download all the necessary files:
this thread contains all the necessary files to unlock your bootloader, at the same time flash a custom kernel that contains ClockWorkMod(CWM) and root.
they also include download for the stock kernel with CMW and root but no overclocking, extra cpu governors and I/O scheduler features:
http://forum.xda-developers.com/showthread.php?t=1560613
if you want to overclock your phone, or improve battery life, download rage kernel:
http://forum.xda-developers.com/showthread.php?t=1398910
then download hybrom v15:
http://forum.xda-developers.com/showthread.php?t=1373435
well that's about it, be careful when flashing as you can easily brick your phone.
follow the instruction in the threads I've given to you.
You install custom ROMs via the ClockWorkMod, the only thing you flash via your computer is the kernel. In case your stuck in bootloop, you can always reflash to the stock ROM of sony ericsson.
Stock ROM for WT19i:
http://dl.dropbox.com/u/17122099/Sony Tools/WT19i_4.0.2.A.0.62__1254-1889.ftf
then flash it with flashtool or using the sofware on this thread.
NOTE:
-Rage kernel has a different way of entering in ClockWorkMod, turn your phone on. As it boots up, as soon you see the LED indicator turns blue or as soon as the boot logo brightens up, immediately press the home key to enter ClockWorkMod.
-in the stock kernel with CMW and root, the LED indicator is always off. Turn your phone on. Press the on-off key once or twice as soon as the b logo gets brighter, to enter in ClockWorkMod.
Click to expand...
Click to collapse
Wow, thanks so much for the very detailed guide!
Will try it out now!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Running Hybrom V15 now with Rage Kernel.
So far so good.
Now, how do I set the CPU frequency?
Kira.Lawliet said:
For your CPU config, I suggest increasing the minimum frequency to 320-480ish; because around that frequency it consumes more or less the same voltage. If you set it too low, you may end up using more power because your phone may struggle to process services (caused by low frequency). Reference here -it may be on another device forum but that's applicable on other phones-
IIRC smartassv2 will be defaulting to a low frequency when the phone's screen is off so I think it's good to use it, for your brightness it's ok but I use around 20-30% brightness when outdoors
Click to expand...
Click to collapse
I have had my minimum CPU frequency on 122 MHz for months, no problem. Phone sets the CPU frequency itself higher, when it needs more power. Putting minimum too low doesn't affect it.
T3sla said:
I kinda disagree.If i remember correctly your phone has minimum frequency of 245 with stock kernel so why increasing?I use my mini with rage kernel at 122-1024 smartassV2 governor never had any problem.I use profile for screen off settings are 122-368.Battery consumption is 0.4-0.5% over night not in flight mode and cpu spy shows 99% of that time cpu is sitting on 122 MHz.So unless your phone is heavy loaded with apps that constantly require cpu power i recommend trying my settings and test over night, you got nothing to loose after all
Click to expand...
Click to collapse
I have exactly same settings.
---------- Post added at 01:31 PM ---------- Previous post was at 01:18 PM ----------
xachiel said:
its a memory auto killer. not a task killer. and use gemini app to config auto-run your apps so they dont run at the background
Click to expand...
Click to collapse
Taskkillers/memoryautokillers etc are useless, even not recommended for Android. These close apps, that need to be running and when they start again, consume more battery.
Android is built self to kill apps, which are no longer needed in memory. It kills some apps, when free RAM amount reaches minfree level, amount of RAM that has to be always free.
If you want to improve RAM, better try out V6 Supercharger, link in my signature. It changes the minfree amounts to higher of lower, which one you want. Either multitasking, lowers minfree amount to allow more apps to work at one time, so you can access these easily, without the need of reopening. Or higher minfree amount, to keep more free RAM.
I personally have chosen Balanced.
Someguyfromhell said:
I have had my minimum CPU frequency on 122 MHz for months, no problem. Phone sets the CPU frequency itself higher, when it needs more power. Putting minimum too low doesn't affect it.
I have exactly same settings.
---------- Post added at 01:31 PM ---------- Previous post was at 01:18 PM ----------
Taskkillers/memoryautokillers etc are not useless, even not recommended for Android. These close apps, that need to be running and when they start again, consume more battery.
Android is built self to kill apps, which are no longer needed in memory. It kills some apps, when free RAM amount reaches minfree level, amount of RAM that has to be always free.
If you want to improve RAM, better try out V6 Supercharger, link in my signature. It changes the minfree amounts to higher of lower, which one you want. Either multitasking, lowers minfree amount to allow more apps to work at one time, so you can access these easily, without the need of reopening. Or higher minfree amount, to keep more free RAM.
I personally have chosen Balanced.
Click to expand...
Click to collapse
And i use V6supercharger too among others scriptsNext project undervolting.
Phone sets the CPU frequency itself higher, when it needs more power. Putting minimum too low doesn't affect it.
Click to expand...
Click to collapse
It does affect it in a little way; putting it up on low frequency -> phone will scale frequency according to needed -> what does it use to scale? -> uses abit of power to scale according to needed; so it's logical to why not set it to a mid frequency when it consumes the same volt therefore not wasting a bit energy to scale up or down when needed; of course' the number of your apps/running services affects this so it depends; you might hardly notice any change at all. It just that it's optimal but I'll not argue with this since we don't ran out of battery anyway on travelling eh?
-reference #1, #2 read more have fun testing
Kira.Lawliet said:
It does affect it in a little way; putting it up on low frequency -> phone will scale frequency according to needed -> what does it use to scale? -> uses abit of power to scale according to needed; so it's logical to why not set it to a mid frequency when it consumes the same volt therefore not wasting a bit energy to scale up or down when needed; of course' the number of your apps/running services affects this so it depends; you might hardly notice any change at all. It just that it's optimal but I'll not argue with this since we don't ran out of battery anyway on travelling eh?
-reference #1, #2 read more have fun testing
Click to expand...
Click to collapse
Yes but cpu power from my poor knowledge depends from frequency, so when you set a 3 times higher minimum frequency even if voltage is the same you'll have 3 times more power consumption when idle.I don't think that scaling cpu consumes more than 3 times powerBTW very interesting threads you provide us, did some reading so far and definitely gonna read the whole thing
melander said:
Wow, thanks so much for the very detailed guide!
Will try it out now!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Running Hybrom V15 now with Rage Kernel.
So far so good.
Now, how do I set the CPU frequency?
Click to expand...
Click to collapse
you can download No Frills CPU Control in the Google Play Store(Market) for beginners, i suggest using SmartAssv2 for the CPU governor and Noop or SIO for the I/O Scheduler. as i remember, Noop or SIO provides the fastest throughput and best suitable for flash storage
here's the list of the advantages and disadvantages of those I/O Schedulers:
Q. "What purposes does an i/o scheduler serve?"
A.
Minimize hard disk seek latency.
Prioritize I/O requests from processes.
Allocate disk bandwidth for running processes.
Guarantee that certain requests will be served before a deadline.
So in the simplest of simplest form: Kernel controls the disk access using I/O Scheduler.
Q. "What goals every I/O scheduler tries to balance?"
A.
Fairness (let every process have its share of the access to disk)
Performance (try to serve requests close to current disk head position first, because seeking there is fastest)
Real-time (guarantee that a request is serviced in a given time)
Q. "Description, advantages, disadvantages of each I/O Scheduler?"
A.
1) Noop
Inserts all the incoming I/O requests to a First In First Out queue and implements request merging. Best used with storage devices that does not depend on mechanical movement to access data (yes, like our flash drives). Advantage here is that flash drives does not require reordering of multiple I/O requests unlike in normal hard drives.
Advantages:
Serves I/O requests with least number of cpu cycles. (Battery friendly?)
Best for flash drives since there is no seeking penalty.
Good throughput on db systems.
Disadvantages:
Reduction in number of cpu cycles used is proportional to drop in performance.
2) Deadline
Goal is to minimize I/O latency or starvation of a request. The same is achieved by round robin policy to be fair among multiple I/O requests. Five queues are aggressively used to reorder incoming requests.
Advantages:
Nearly a real time scheduler.
Excels in reducing latency of any given single I/O.
Best scheduler for database access and queries.
Bandwidth requirement of a process - what percentage of CPU it needs, is easily calculated.
Like noop, a good scheduler for solid state/flash drives.
Disadvantages:
When system is overloaded, set of processes that may miss deadline is largely unpredictable.
3) CFQ
Completely Fair Queuing scheduler maintains a scalable per-process I/O queue and attempts to distribute the available I/O bandwidth equally among all I/O requests. Each per-process queue contains synchronous requests from processes. Time slice allocated for each queue depends on the priority of the 'parent' process. V2 of CFQ has some fixes which solves process' i/o starvation and some small backward seeks in the hope of improving responsiveness.
Advantages:
Considered to deliver a balanced i/o performance.
Easiest to tune.
Excels on multiprocessor systems.
Best database system performance after deadline.
Disadvantages:
Some users report media scanning takes longest to complete using CFQ. This could be because of the property that since the bandwidth is equally distributed to all i/o operations during boot-up, media scanning is not given any special priority.
Jitter (worst-case-delay) exhibited can sometimes be high, because of the number of tasks competing for the disk.
4) BFQ
Instead of time slices allocation by CFQ, BFQ assigns budgets. Disk is granted to an active process until it's budget (number of sectors) expires. BFQ assigns high budgets to non-read tasks. Budget assigned to a process varies over time as a function of it's behavior.
Advantages:
Believed to be very good for usb data transfer rate.
Believed to be the best scheduler for HD video recording and video streaming. (because of less jitter as compared to CFQ and others)
Considered an accurate i/o scheduler.
Achieves about 30% more throughput than CFQ on most workloads.
Disadvantages:
Not the best scheduler for benchmarking.
Higher budget assigned to a process can affect interactivity and increased latency.
5) SIO
Simple I/O scheduler aims to keep minimum overhead to achieve low latency to serve I/O requests. No priority quesues concepts, but only basic merging. Sio is a mix between noop & deadline. No reordering or sorting of requests.
Advantages:
Simple, so reliable.
Minimized starvation of requests.
Disadvantages:
Slow random-read speeds on flash drives, compared to other schedulers.
Sequential-read speeds on flash drives also not so good.
6) V(R)
Unlike other schedulers, synchronous and asynchronous requests are not treated separately, instead a deadline is imposed for fairness. The next request to be served is based on it's distance from last request.
Advantages:
May be best for benchmarking because at the peak of it's 'form' VR performs best.
Disadvantages:
Performance fluctuation results in below-average performance at times.
Least reliable/most unstable.
7) Anticipatory
Based on two facts
i) Disk seeks are really slow.
ii) Write operations can happen whenever, but there is always some process waiting for read operation.
So anticipatory prioritize read operations over write. It anticipates synchronous read operations.
Advantages:
Read requests from processes are never starved.
As good as noop for read-performance on flash drives.
Disadvantages:
'Guess works' might not be always reliable.
Reduced write-performance on high performance disks.
Q. "Best I/O Scheduler?"
A.There is nothing called "best" i/o scheduler. Depending on your usage environment and tasks/apps been run, use different schedulers. That's the best i can suggest.
However, considering the overall performance, battery, reliability and low latency, it is believed that
SIO > Noop > Deadline > VR > BFQ > CFQ, given all schedulers are tweaked and the storage used is a flash device.
Q. "How do i change I/O schedulers?"
Voltage Control or No Frills from market.
And here's the list and explanations for all CPU Governors for a custom android kernel:
These are the 18 governors we're talking about.
1) Ondemand
2) Ondemandx
3) Conservative
4) Interactive
5) Interactivex
6) Lulzactive
7) Smartass
8) SmartassV2
9) Intellidemand
10) Lazy
11) Lagfree
12) Lionheart
13) LionheartX
14) Brazilianwax
15) SavagedZen
16) Userspacce
17) Powersave
18) Performance
1) Ondemand:
Default governor in almost all stock kernels. One main goal of the ondemand governor is to switch to max frequency as soon as there is a CPU activity detected to ensure the responsiveness of the system. (You can change this behavior using smooth scaling parameters, refer Siyah tweaks at the end of 3rd post.) Effectively, it uses the CPU busy time as the answer to "how critical is performance right now" question. So Ondemand jumps to maximum frequency when CPU is busy and decreases the frequency gradually when CPU is less loaded/apporaching idle. Even though many of us consider this a reliable governor, it falls short on battery saving and performance on default settings. One potential reason for ondemand governor being not very power efficient is that the governor decide the next target frequency by instant requirement during sampling interval. The instant requirement can response quickly to workload change, but it does not usually reflect workload real CPU usage requirement in a small longer time and it possibly causes frequently change between highest and lowest frequency.
2) Ondemandx:
Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers. This is not true for most of the other governors. I personally feel ondemand/ondemandx goes best with SIO I/O scheduler.
3) Conservative:
A slower Ondemand which scales up slowly to save battery. The conservative governor is based on the ondemand governor. It functions like the Ondemand governor by dynamically adjusting frequencies based on processor utilization. However, the conservative governor increases and decreases CPU speed more gradually. Simply put, this governor increases the frequency step by step on CPU load and jumps to lowest frequency on CPU idle. Conservative governor aims to dynamically adjust the CPU frequency to current utilization, without jumping to max frequency. The sampling_down_factor value acts as a negative multiplier of sampling_rate to reduce the frequency that the scheduler samples the CPU utilization. For example, if sampling_rate equal to 20,000 and sampling_down_factor is 2, the governor samples the CPU utilization every 40,000 microseconds.
4) Interactive:
Can be considered a faster ondemand. So more snappier, less battery. Interactive is designed for latency-sensitive, interactive workloads. Instead of sampling at every interval like ondemand, it determines how to scale up when CPU comes out of idle. The governor has the following advantages: 1) More consistent ramping, because existing governors do their CPU load sampling in a workqueue context, but interactive governor does this in a timer context, which gives more consistent CPU load sampling. 2) Higher priority for CPU frequency increase, thus giving the remaining tasks the CPU performance benefit, unlike existing governors which schedule ramp-up work to occur after your performance starved tasks have completed. Interactive It's an intelligent Ondemand because of stability optimizations. Why??
Sampling the CPU load every X ms (like Ondemand) can lead to under-powering the CPU for X ms, leading to dropped frames, stuttering UI, etc. Instead of sampling the CPU at a specified rate, the interactive governor will check whether to scale the CPU frequency up soon after coming out of idle. When the CPU comes out of idle, a timer is configured to fire within 1-2 ticks. If the CPU is very busy between exiting idle and when the timer fires, then we assume the CPU is underpowered and ramp to max frequency.
5) Interactivex:
This is an Interactive governor with a wake profile. More battery friendly than interactive.
6) Lulzactive:
This new find from Tegrak is based on Interactive & Smartass governors and is one of the favorites.
Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency.
New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down.
When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down.
Example:
Consider
inc_cpu_load=70
pump_up_step=2
pump_down_step=1
If current frequency=200, Every up_sampling_time Us if cpu load >= 70%, cpu is scaled up 2 steps - to 800.
If current frequency =1200, Every down_sampling_time Us if cpu load < 70%, cpu is scaled down 1 step - to 1000.
7) Smartass:
Result of Erasmux rewriting the complete code of interactive governor. Main goal is to optimize battery life without comprising performance. Still, not as battery friendly as smartassV2 since screen-on minimum frequency is greater than frequencies used during screen-off. Smartass would jump up to highest frequency too often as well.
8) SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
9) Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors )
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
10) Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
11) Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
12) Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source. Tweaks comes from 1) Knzo 2) Morfic. The original idea comes from Netarchy. See here. The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
To 'experience' Lionheart using conservative, try these tweaks:
sampling_rate:10000 or 20000 or 50000, whichever you feel is safer. (transition latency of the CPU is something below 10ms/10,000uS hence using 10,000 might not be safe).
up_threshold:60
down_threshold:30
freq_step:5
Lionheart goes well with deadline i/o scheduler. When it comes to smoothness (not considering battery drain), a tuned conservative delivers more as compared to a tuned ondemand.
13) LionheartX
LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
14) Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery.
15) SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
16) Userspace:
Instead of automatically determining frequencies, lets user set frequencies.
17) Powersave:
Locks max frequency to min frequency. Can not be used as a screen-on or even screen-off (if scaling min frequency is too low).
18) Performance:
Sets min frequency as max frequency. Use this while benchmarking!
So, Governors can be categorized into 3/4 on a high level:
1.a) Ondemand Based:
Works on "ramp-up on high load" principle. CPU busy-time is taken into consideration for scaling decisions. Members: Ondemand, OndemandX, Intellidemand, Lazy, Lagfree.
1.b) Conservative Based:
Members: Conservative, Lionheart, LionheartX
2) Interactive Based:
Works on "make scaling decision when CPU comes out of idle-loop" principle. Members: Interactive, InteractiveX, Lulzactive, Smartass, SmartassV2, Brazilianwax, SavagedZen.
3) Weird Category:
Members: Userspace, Powersave, Performance.
You can read all of these form this thread.
T3sla said:
I kinda disagree.If i remember correctly your phone has minimum frequency of 245 with stock kernel so why increasing?I use my mini with rage kernel at 122-1024 smartassV2 governor never had any problem.I use profile for screen off settings are 122-368.Battery consumption is 0.4-0.5% over night not in flight mode and cpu spy shows 99% of that time cpu is sitting on 122 MHz.So unless your phone is heavy loaded with apps that constantly require cpu power i recommend trying my settings and test over night, you got nothing to loose after all
Click to expand...
Click to collapse
kindly read this thread:
Q. "I'm going to set scaling min freq as 100 mhz because my kernel supports it. Hope there's nothing wrong in doing that."
A. Wait! You may want to stay away from using 100mhz during screen-off or screen-on states for three reasons 1) It seems 100 mhz uses more power than 200 mhz. According to tests, 100 mhz accounted to 1 W / GHz and 200 mhz to 0.7 W / GHz, when both the cores were online. 2) 200 mhz can finish same task faster compared 100 mhz and thus hit deep idle soon. 3) 200 mhz is the 'sweet spot' of frequency in SGS II. ie, the frequency used in the calculations based on the optimal energy to run (Ex: In Milestone it's 550 MHz). So , 'energetically efficient' frequency for our CPU is 200 mhz.
Someguyfromhell said:
I have had my minimum CPU frequency on 122 MHz for months, no problem. Phone sets the CPU frequency itself higher, when it needs more power. Putting minimum too low doesn't affect it.
I have exactly same settings.
---------- Post added at 01:31 PM ---------- Previous post was at 01:18 PM ----------
Taskkillers/memoryautokillers etc are useless, even not recommended for Android. These close apps, that need to be running and when they start again, consume more battery.
Android is built self to kill apps, which are no longer needed in memory. It kills some apps, when free RAM amount reaches minfree level, amount of RAM that has to be always free.
If you want to improve RAM, better try out V6 Supercharger, link in my signature. It changes the minfree amounts to higher of lower, which one you want. Either multitasking, lowers minfree amount to allow more apps to work at one time, so you can access these easily, without the need of reopening. Or higher minfree amount, to keep more free RAM.
I personally have chosen Balanced.
Click to expand...
Click to collapse
thanks for the link to V6 Supercharger, now my phone is lag free
Thank you again for the very detailed explanation...
Currently trying out your recommendations...

Clocking Your CPU

Ok I'm hoping this post sticks, because no one has this listed anywhere it seems. I have compiled a list of commonly recognized cpu governors and frequencies that the EVO 3D processor and different kernels recognize. The max frequency depends on the kernel you flashed.
Ok so the Evo 3D processor only changes in intervals of 54 so I
researched. No one seems to have a guide on the net that gives those
numbers. The OC Daemon on ViperRom tells you all your options when
you go into terminal to change it, and it also gives you all the
processor governor options too. Where as with MeanRom and Anthrax
Kernel it gives you the minimum and maximum but shows nothing
inbetween, both with governors and frequencies.
starting with minimum:
192000
216000
270000
324000
378000
432000
486000
540000
594000
648000
702000
756000
810000
864000
918000
972000
1026000
1080000
1134000
1188000 Stock max, not quite 1.2 Ghz
1242000 A true 1.2 Ghz
1296000
1350000
1404000
1458000
1512000
1566000
1620000
1674000
1728000 Zedomax says this is most stable max freq. for him on ViperRom
1782000
1836000
1890000
1944000 Only read of one person having stability with this
Governor settings:
Ondemand - when you need it
Powersave - obviously
Conservative - straight forward
Interactive - sounds cut and dry
Performance - I guess hardcore gaming
Userspace - not sure what this one does
Auto - Uses kernel to determine
The userspace governer is basically a legacy thing (see: http://www.thinkwiki.org/wiki/How_to_make_use_of_Dynamic_Frequency_Scaling) that allows you or an application/module that resides in userspace to manually adjust the CPU frequency.
This can be used in an android world by allowing an app to modify the CPU frequency without relying on root access, if I remember correctly. It's basically useless though since I don't think any applications aside from maybe setcpu would use such a feature since most applications automatically assume you aren't rooted thus are using the typical default cpu governor.
Good post.
umm.. i think this is in the wrong spot??? maybe im wrong?? should be in the general...
evod3 said:
umm.. i think this is in the wrong spot??? maybe im wrong?? should be in the general...
Click to expand...
Click to collapse
Then how do I move it? Honest question. This is my first true post/thread that I started.
It's just when I go looking for answers for my phone I go directly to the CDMA section. Only after I can't find my answer there do I branch out and search the whole site. I usually dont think of the EVO 3D as a GSM phone. I mean generally speaking the EVO 3D is more on sprint than any other network world wide.
Other than that does anyone else have the problem of not being able to change voltages? I mean the SetCPU app shows it as a tab but when you purchase and download it there's no tab for votages. I dont wanna pay for another app and not have what it advertises. I emailed the devs of setcpu and never heard back. so I feel like I waisted my money on the dern thing.
I want to be able to truely undervolt and overclock my cpu for power saving reasons. Come on. My stock battery life was like 4 hours, 5 tops, with moderate use. ViperRom changed that to 18+ with moderate use. Now Im using MeanRom with the Anthrax kernel, overclocked to 1.3 GHz and im getting a little more than 36 hours with moderate use.
I'm betting with undervolting we could get a lot more battery life.
SketchyStunts said:
You can run viperROM.....it comes with the Tiamat kernel & has vipercontrol/vipermod baked in & can undervolt your heart out. I believe the it come with voltages -100 from stock. Had mine -125 & the most stable ROM i've ran yet.
Click to expand...
Click to collapse
http://forum.xda-developers.com/showthread.php?p=24325646
This is from another thread I found earlier. Not sure what is meant buy -100. Is that mV V MV or what?
stephangardner said:
Then how do I move it? Honest question. This is my first true post/thread that I started.
It's just when I go looking for answers for my phone I go directly to the CDMA section. Only after I can't find my answer there do I branch out and search the whole site. I usually dont think of the EVO 3D as a GSM phone. I mean generally speaking the EVO 3D is more on sprint than any other network world wide.
Other than that does anyone else have the problem of not being able to change voltages? I mean the SetCPU app shows it as a tab but when you purchase and download it there's no tab for votages. I dont wanna pay for another app and not have what it advertises. I emailed the devs of setcpu and never heard back. so I feel like I waisted my money on the dern thing.
I want to be able to truely undervolt and overclock my cpu for power saving reasons. Come on. My stock battery life was like 4 hours, 5 tops, with moderate use. ViperRom changed that to 18+ with moderate use. Now Im using MeanRom with the Anthrax kernel, overclocked to 1.3 GHz and im getting a little more than 36 hours with moderate use.
I'm betting with undervolting we could get a lot more battery life.
http://forum.xda-developers.com/showthread.php?p=24325646
This is from another thread I found earlier. Not sure what is meant buy -100. Is that mV V MV or what?
Click to expand...
Click to collapse
That was from awile back when I had the EVO 4g & used vipermod to undervolt on AOSP. I used to get insane battery life. Miss that. Lol
Wait, maybe not can't remember. Stuck in 1x hell at the moment so can't check the link. Grrrrrr
Sent from my PG86100 using xda premium
I disagree. Because this has to do with frequency clocking, I'd say this is very much good to have stuck here.
Perhaps adding further information about undervolting would be even better?
LiquidSolstice said:
I disagree. Because this has to do with frequency clocking, I'd say this is very much good to have stuck here.
Perhaps adding further information about undervolting would be even better?
Click to expand...
Click to collapse
I hope we get some more insight.
I rooted for the sole purpose of getting better battery life. I read about undervolting, overclocking and underclocking to save battery. Then I find I can't change voltages like I thought. I know its out there just gotta get the right dev to respond to this thread.
Sent from my PG86100 using xda premium
stephangardner said:
I hope we get some more insight.
I rooted for the sole purpose of getting better battery life. I read about undervolting, overclocking and underclocking to save battery. Then I find I can't change voltages like I thought. I know its out there just gotta get the right dev to respond to this thread.
Sent from my PG86100 using xda premium
Click to expand...
Click to collapse
Best of luck to you, I'm sure many will thank you for this
stephangardner said:
. Then I find I can't change voltages like I thought..
Sent from my PG86100 using xda premium
Click to expand...
Click to collapse
What rom are you running? in system tuner pro click the "cpu" button you'll come to the screen where you set clock speeds, at the very top is a tab labled "voltage" hit that and there you can set your voltages. be careful though some phones dont play well with some setting, thats why i dont preset voltages in my ROM.
Originally Posted by stephangardner
. Then I find I can't change voltages like I thought..
Sent from my PG86100 using xda premium
Click to expand...
Click to collapse
What rom are you running? in system tuner pro click the "cpu" button you'll come to the screen where you set clock speeds, at the very top is a tab labled "voltage" hit that and there you can set your voltages. be careful though some phones dont play well with some setting, thats why i dont preset voltages in my ROM.
Click to expand...
Click to collapse
+1 for System Tuner Pro, love that app! I, too, hope this thread sticks cause I've been looking for PRECISELY this info to no avail recently!
Subscribed! Howdy folks!
Relevant to Dev. This stays here....
Nice work getting this here, OP.
Here is a great thread with a TON of useful information about kernels, govenors,I/O schedulers, kernel modules and a lot more... Very informative.
http://forum.xda-developers.com/showthread.php?t=1369817
Sent from my PG86100 using Tapatalk 2 Beta-5
steal25 said:
What rom are you running?
Click to expand...
Click to collapse
First Rom was viperRom then I added the rc remix kernel. Second Rom was the meanRom then a few hours later added the anthrax kernel
Sent from my PG86100 using xda premium
droidphile said:
1. GOVERNORS
I) MANUAL:
These are the 18 governors we're talking about.
1) Ondemand 2) Ondemandx 3) Conservative 4) Interactive 5) Interactivex 6) Lulzactive 7) Smartass 8) SmartassV2 9) Intellidemand 10) Lazy 11) Lagfree 12) Lionheart 13) LionheartX 14) Brazilianwax 15) SavagedZen 16) Userspacce 17) Powersave 18) Performance
1) Ondemand: Default governor in almost all stock kernels. One main goal of the ondemand governor is to switch to max frequency as soon as there is a CPU activity detected to ensure the responsiveness of the system. (You can change this behavior using smooth scaling parameters, refer Siyah tweaks at the end of 3rd post.) Effectively, it uses the CPU busy time as the answer to "how critical is performance right now" question. So Ondemand jumps to maximum frequency when CPU is busy and decreases the frequency gradually when CPU is less loaded/apporaching idle. Even though many of us consider this a reliable governor, it falls short on battery saving and performance on default settings. One potential reason for ondemand governor being not very power efficient is that the governor decide the next target frequency by instant requirement during sampling interval. The instant requirement can response quickly to workload change, but it does not usually reflect workload real CPU usage requirement in a small longer time and it possibly causes frequently change between highest and lowest frequency.
2) Ondemandx: Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers. This is not true for most of the other governors. I personally feel ondemand/ondemandx goes best with SIO I/O scheduler.
3) Conservative: A slower Ondemand which scales up slowly to save battery. The conservative governor is based on the ondemand governor. It functions like the Ondemand governor by dynamically adjusting frequencies based on processor utilization. However, the conservative governor increases and decreases CPU speed more gradually. Simply put, this governor increases the frequency step by step on CPU load and jumps to lowest frequency on CPU idle. Conservative governor aims to dynamically adjust the CPU frequency to current utilization, without jumping to max frequency. The sampling_down_factor value acts as a negative multiplier of sampling_rate to reduce the frequency that the scheduler samples the CPU utilization. For example, if sampling_rate equal to 20,000 and sampling_down_factor is 2, the governor samples the CPU utilization every 40,000 microseconds.
4) Interactive: Can be considered a faster ondemand. So more snappier, less battery. Interactive is designed for latency-sensitive, interactive workloads. Instead of sampling at every interval like ondemand, it determines how to scale up when CPU comes out of idle. The governor has the following advantages: 1) More consistent ramping, because existing governors do their CPU load sampling in a workqueue context, but interactive governor does this in a timer context, which gives more consistent CPU load sampling. 2) Higher priority for CPU frequency increase, thus giving the remaining tasks the CPU performance benefit, unlike existing governors which schedule ramp-up work to occur after your performance starved tasks have completed. Interactive It's an intelligent Ondemand because of stability optimizations. Why?? Sampling the CPU load every X ms (like Ondemand) can lead to under-powering the CPU for X ms, leading to dropped frames, stuttering UI, etc. Instead of sampling the CPU at a specified rate, the interactive governor will check whether to scale the CPU frequency up soon after coming out of idle. When the CPU comes out of idle, a timer is configured to fire within 1-2 ticks. If the CPU is very busy between exiting idle and when the timer fires, then we assume the CPU is underpowered and ramp to max frequency.
5) Interactivex: This is an Interactive governor with a wake profile. More battery friendly than interactive.
6) Lulzactive: This new find from Tegrak is based on Interactive & Smartass governors and is one of the favorites. Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency. New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down. When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down. Example: Consider inc_cpu_load=70 pump_up_step=2 pump_down_step=1 If current frequency=200, Every up_sampling_time Us if cpu load >= 70%, cpu is scaled up 2 steps - to 800. If current frequency =1200, Every down_sampling_time Us if cpu load < 70%, cpu is scaled down 1 step - to 1000.
7) Smartass: Result of Erasmux rewriting the complete code of interactive governor. Main goal is to optimize battery life without comprising performance. Still, not as battery friendly as smartassV2 since screen-on minimum frequency is greater than frequencies used during screen-off. Smartass would jump up to highest frequency too often as well.
8) SmartassV2: Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
9) Intellidemand: Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors ) To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
10) Lazy: This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
11) Lagfree: Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
12) Lionheart: Lionheart is a conservative-based governor which is based on samsung's update3 source. Tweaks comes from 1) Knzo 2) Morfic. The original idea comes from Netarchy. See here. The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
To 'experience' Lionheart using conservative, try these tweaks: sampling_rate:10000 or 20000 or 50000, whichever you feel is safer. (transition latency of the CPU is something below 10ms/10,000uS hence using 10,000 might not be safe). up_threshold:60 down_threshold:30 freq_step:5 Lionheart goes well with deadline i/o scheduler. When it comes to smoothness (not considering battery drain), a tuned conservative delivers more as compared to a tuned ondemand.
13) LionheartX LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
14) Brazilianwax: Similar to smartassV2. More aggressive ramping, so more performance, less battery.
15) SavagedZen: Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
16) Userspace: Instead of automatically determining frequencies, lets user set frequencies.
17) Powersave: Locks max frequency to min frequency. Can not be used as a screen-on or even screen-off (if scaling min frequency is too low).
18) Performance: Sets min frequency as max frequency. Use this while benchmarking!
So, Governors can be categorized into 3/4 on a high level: 1.a) Ondemand Based: Works on "ramp-up on high load" principle. CPU busy-time is taken into consideration for scaling decisions. Members: Ondemand, OndemandX, Intellidemand, Lazy, Lagfree. 1.b) Conservative Based: Members: Conservative, Lionheart, LionheartX 2) Interactive Based: Works on "make scaling decision when CPU comes out of idle-loop" principle. Members: Interactive, InteractiveX, Lulzactive, Smartass, SmartassV2, Brazilianwax, SavagedZen. 3) Weird Category: Members: Userspace, Powersave, Performance.
Click to expand...
Click to collapse
Good explanations as to what the OP was trying to relay.
gunfromsako said:
Here is a great thread with a TON of useful information about kernels, govenors,I/O schedulers, kernel modules and a lot more... Very informative.
http://forum.xda-developers.com/showthread.php?t=1369817
Click to expand...
Click to collapse
I'll have to read this one when I'm on a computer. Way to much info for the app.
steal25 said:
in system tuner pro click the "cpu" button you'll come to the screen where you set clock speeds, at the very top is a tab labled "voltage" hit that and there you can set your voltages.
Click to expand...
Click to collapse
Brownie points for this guy. Downloaded that app now and loving it. I'm gonna start with a 10 mV decrease on all voltages then do like 2 mV increments till I have issues then I'll report back.
dimebagdan65 said:
+1 for System Tuner Pro, love that app!
Click to expand...
Click to collapse
+2
By the way guys and gals does anyone else here have dyslexia? I didn't think I could get into all this because of it but I find it kinda soothing. Like working on cars helps with my ADHD. I feel like Jessie from The Fast And The Furious. Ha ha
Sent from my PG86100 using xda premium
oohaylima said:
Good explanations as to what the OP was trying to relay.
Click to expand...
Click to collapse
Same post I linked right above you...
I wipe till it bleeds...
gunfromsako said:
Same post I linked right above you...
I wipe till it bleeds...
Click to expand...
Click to collapse
I know. All I did was quote the author of the section that pertains to the governor in which the OP was trying to break down in the beginning.
I'm a big fan of keeping things under one thread for easy fluidity of related information.
gunfromsako said:
Same post I linked right above you...
I wipe till it bleeds...
Click to expand...
Click to collapse
Oh... my... GOD! I friggin love your sig! My sides hurt! I'm totally with ya! Never want problems? Always start with a clean slate! Duh... ^_^
I always keep my phone undervolted -50mv @ 1.5GHz intellanthrax. That's the farthest I can go without problems.
sent from America...F__k Yeah!
Comin again to save the motherf**kin day yeah!
Only one question... Rockin out or ballad style? XD

CPU Governors explained

Thanks to deedii for posting this in another forum:
http://forum.xda-developers.com/show...65&postcount=2
Android CPU governors explained
1: OnDemand
2: OndemandX
3: Performance
4: Powersave
5: Conservative
6: Userspace
7: Min Max
8: Interactive
9: InteractiveX
10: Smartass
11: SmartassV2
12: Scary
13: Lagfree
14: Smoothass
15: Brazilianwax
16: SavagedZen
17: Lazy
18: Lionheart
19: LionheartX
20: Intellidemand
21: Hotplug
22: BadAss
23: Wheatley
1: OnDemand Governor:
This governor has a hair trigger for boosting clockspeed to the maximum speed set by the user. If the CPU load placed by the user abates, the OnDemand governor will slowly step back down through the kernel's frequency steppings until it settles at the lowest possible frequency, or the user executes another task to demand a ramp.
OnDemand has excellent interface fluidity because of its high-frequency bias, but it can also have a relatively negative effect on battery life versus other governors. OnDemand is commonly chosen by smartphone manufacturers because it is well-tested, reliable, and virtually guarantees the smoothest possible performance for the phone. This is so because users are vastly more likely to ***** about performance than they are the few hours of extra battery life another governor could have granted them.
This final fact is important to know before you read about the Interactive governor: OnDemand scales its clockspeed in a work queue context. In other words, once the task that triggered the clockspeed ramp is finished, OnDemand will attempt to move the clockspeed back to minimum. If the user executes another task that triggers OnDemand's ramp, the clockspeed will bounce from minimum to maximum. This can happen especially frequently if the user is multi-tasking. This, too, has negative implications for battery life.
2: OndemandX:
Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers. This is not true for most of the other governors. I personally feel ondemand/ondemandx goes best with SIO I/O scheduler.
3: Performance Governor:
This locks the phone's CPU at maximum frequency. While this may sound like an ugly idea, there is growing evidence to suggest that running a phone at its maximum frequency at all times will allow a faster race-to-idle. Race-to-idle is the process by which a phone completes a given task, such as syncing email, and returns the CPU to the extremely efficient low-power state. This still requires extensive testing, and a kernel that properly implements a given CPU's C-states (low power states).
4: Powersave Governor:
The opposite of the Performance governor, the Powersave governor locks the CPU frequency at the lowest frequency set by the user.
5:Conservative Governor:
This biases the phone to prefer the lowest possible clockspeed as often as possible. In other words, a larger and more persistent load must be placed on the CPU before the conservative governor will be prompted to raise the CPU clockspeed. Depending on how the developer has implemented this governor, and the minimum clockspeed chosen by the user, the conservative governor can introduce choppy performance. On the other hand, it can be good for battery life.
The Conservative Governor is also frequently described as a "slow OnDemand," if that helps to give you a more complete picture of its functionality.
6: Userspace Governor:
This governor, exceptionally rare for the world of mobile devices, allows any program executed by the user to set the CPU's operating frequency. This governor is more common amongst servers or desktop PCs where an application (like a power profile app) needs privileges to set the CPU clockspeed.
7: Min Max
well this governor makes use of only min & maximum frequency based on workload... no intermediate frequencies are used.
8: Interactive Governor:
Much like the OnDemand governor, the Interactive governor dynamically scales CPU clockspeed in response to the workload placed on the CPU by the user. This is where the similarities end. Interactive is significantly more responsive than OnDemand, because it's faster at scaling to maximum frequency.
Unlike OnDemand, which you'll recall scales clockspeed in the context of a work queue, Interactive scales the clockspeed over the course of a timer set arbitrarily by the kernel developer. In other words, if an application demands a ramp to maximum clockspeed (by placing 100% load on the CPU), a user can execute another task before the governor starts reducing CPU frequency. This can eliminate the frequency bouncing discussed in the OnDemand section. Because of this timer, Interactive is also better prepared to utilize intermediate clockspeeds that fall between the minimum and maximum CPU frequencies. This is another pro-battery life benefit of Interactive.
However, because Interactive is permitted to spend more time at maximum frequency than OnDemand (for device performance reasons), the battery-saving benefits discussed above are effectively negated. Long story short, Interactive offers better performance than OnDemand (some say the best performance of any governor) and negligibly different battery life.
Interactive also makes the assumption that a user turning the screen on will shortly be followed by the user interacting with some application on their device. Because of this, screen on triggers a ramp to maximum clockspeed, followed by the timer behavior described above.
9: InteractiveX Governor:
Created by kernel developer "Imoseyon," the InteractiveX governor is based heavily on the Interactive governor, enhanced with tuned timer parameters to better balance battery vs. performance. The InteractiveX governor's defining feature, however, is that it locks the CPU frequency to the user's lowest defined speed when the screen is off.
10: Smartass
Is based on the concept of the interactive governor.
I have always agreed that in theory the way interactive works – by taking over the idle loop – is very attractive. I have never managed to tweak it so it would behave decently in real life. Smartass is a complete rewrite of the code plus more. I think its a success. Performance is on par with the “old” minmax and I think smartass is a bit more responsive. Battery life is hard to quantify precisely but it does spend much more time at the lower frequencies.
Smartass will also cap the max frequency when sleeping to 352Mhz (or if your min frequency is higher than 352 – why?! – it will cap it to your min frequency). Lets take for example the 528/176 kernel, it will sleep at 352/176. No need for sleep profiles any more!"
11: SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
12: Scary
A new governor wrote based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it's above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to 245Mhz, and if your min freq is higher than 245mhz, it will reset the min to 120mhz while screen is off and restore it upon screen awakening, and still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance. It will give the same performance as conservative right now, it will get tweaked over time.
13: Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
14: Smoothass:
The same as the Smartass “governor” But MUCH more aggressive & across the board this one has a better battery life that is about a third better than stock KERNEL
15: Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery
16: SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
17: Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
18: Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source.
The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
19: LionheartX
LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
20: Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors)
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
21: Hotplug Governor:
The Hotplug governor performs very similarly to the OnDemand governor, with the added benefit of being more precise about how it steps down through the kernel's frequency table as the governor measures the user's CPU load. However, the Hotplug governor's defining feature is its ability to turn unused CPU cores off during periods of low CPU utilization. This is known as "hotplugging."
22: BadAss Governor:
Badass removes all of this "fast peaking" to the max frequency. On a typical system the cpu won't go above 918Mhz and therefore stay cool and will use less power. To trigger a frequency increase, the system must run a bit @ 918Mhz with high load, then the frequency is bumped to 1188Mhz. If that is still not enough the governor gives you full throttle. (this transition should not take longer than 1-2 seconds, depending on the load your system is experiencing)
Badass will also take the gpu load into consideration. If the gpu is moderately busy it will bypass the above check and clock the cpu with 1188Mhz. If the gpu is crushed under load, badass will lift the restrictions to the cpu.
23: Wheatley:
Building on the classic 'ondemand' governor is implemented Wheatley governor. The governor has two additional parameters:
target_residency - The minimum average residency in µs which is considered acceptable for a proper efficient usage of the C4 state. Default is 10000 = 10ms.
allowed_misses - The number sampling intervals in a row the average residency is allowed to be lower than target_residency before the governor reduces the frequency. This ensures that the governor is not too aggressive in scaling down the frequency and reduces it just because some background process was temporarily causing a larger number of wakeups. The default is 5.
Wheatley works as planned and does not hinder the proper C4 usage for task where the C4 can be used properly .
For internet browsing the time spend in C4 has increased by 10% points and the average residency has increased by about 1ms. I guess these differences are mostly due to the different browsing behaviour (I spend the last time more multi-tabbing). But at least we can say that Wheatley does not interfere with the proper use of the C4 state during 'light' tasks. For music playback with screen off the time spend in C4 is practically unchanged, however the average residency is reduced from around 30ms to around 18ms, but this is still more than acceptable.
So the results show that Wheatley works as intended and ensures that the C4 state is used whenever the task allows a proper efficient usage of the C4 state. For more demanding tasks which cause a large number of wakeups and prevent the efficient usage of the C4 state, the governor resorts to the next best power saving mechanism and scales down the frequency. So with the new highly-flexible Wheatley governor one can have the best of both worlds.
Obviously, this governor is only available on multi-core devices.
Credits goes to:
http://icrontic.com/discussion/95140...m-tuner-tegrak
http://forum.xda-developers.com/show....php?t=1369817
Thank you for the great information.
Cool its interesting to know all the features of the govs I used thx
Sent from my LG-P500 using xda premium
updated

LIST OF GOVERNORS for ANDROID

I have found this in XDA. I HAVE NOT MADE THIS !!I simply posted this here for are community to learn what governors do for our phones for Convenience.
Thanks to deedii for posting this in another forum:
http://forum.xda-developers.com/show...65&postcount=2
Android CPU governors explained
1: OnDemand
2: OndemandX
3: Performance
4: Powersave
5: Conservative
6: Userspace
7: Min Max
8: Interactive
9: InteractiveX
10: Smartass
11: SmartassV2
12: Scary
13: Lagfree
14: Smoothass
15: Brazilianwax
16: SavagedZen
17: Lazy
18: Lionheart
19: LionheartX
20: Intellidemand
21: Hotplug
22: Wheatley
23: Lulzactive
24: AbyssPlug
25. BadAss
1: OnDemand Governor:
This governor has a hair trigger for boosting clockspeed to the maximum speed set by the user. If the CPU load placed by the user abates, the OnDemand governor will slowly step back down through the kernel's frequency steppings until it settles at the lowest possible frequency, or the user executes another task to demand a ramp.
OnDemand has excellent interface fluidity because of its high-frequency bias, but it can also have a relatively negative effect on battery life versus other governors. OnDemand is commonly chosen by smartphone manufacturers because it is well-tested, reliable, and virtually guarantees the smoothest possible performance for the phone. This is so because users are vastly more likely to ***** about performance than they are the few hours of extra battery life another governor could have granted them.
This final fact is important to know before you read about the Interactive governor: OnDemand scales its clockspeed in a work queue context. In other words, once the task that triggered the clockspeed ramp is finished, OnDemand will attempt to move the clockspeed back to minimum. If the user executes another task that triggers OnDemand's ramp, the clockspeed will bounce from minimum to maximum. This can happen especially frequently if the user is multi-tasking. This, too, has negative implications for battery life.
2: OndemandX:
Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers. This is not true for most of the other governors. I personally feel ondemand/ondemandx goes best with SIO I/O scheduler.
3: Performance Governor:
This locks the phone's CPU at maximum frequency. While this may sound like an ugly idea, there is growing evidence to suggest that running a phone at its maximum frequency at all times will allow a faster race-to-idle. Race-to-idle is the process by which a phone completes a given task, such as syncing email, and returns the CPU to the extremely efficient low-power state. This still requires extensive testing, and a kernel that properly implements a given CPU's C-states (low power states).
4: Powersave Governor:
The opposite of the Performance governor, the Powersave governor locks the CPU frequency at the lowest frequency set by the user.
5:Conservative Governor:
This biases the phone to prefer the lowest possible clockspeed as often as possible. In other words, a larger and more persistent load must be placed on the CPU before the conservative governor will be prompted to raise the CPU clockspeed. Depending on how the developer has implemented this governor, and the minimum clockspeed chosen by the user, the conservative governor can introduce choppy performance. On the other hand, it can be good for battery life.
The Conservative Governor is also frequently described as a "slow OnDemand," if that helps to give you a more complete picture of its functionality.
6: Userspace Governor:
This governor, exceptionally rare for the world of mobile devices, allows any program executed by the user to set the CPU's operating frequency. This governor is more common amongst servers or desktop PCs where an application (like a power profile app) needs privileges to set the CPU clockspeed.
7: Min Max
well this governor makes use of only min & maximum frequency based on workload... no intermediate frequencies are used.
8: Interactive Governor:
Much like the OnDemand governor, the Interactive governor dynamically scales CPU clockspeed in response to the workload placed on the CPU by the user. This is where the similarities end. Interactive is significantly more responsive than OnDemand, because it's faster at scaling to maximum frequency.
Unlike OnDemand, which you'll recall scales clockspeed in the context of a work queue, Interactive scales the clockspeed over the course of a timer set arbitrarily by the kernel developer. In other words, if an application demands a ramp to maximum clockspeed (by placing 100% load on the CPU), a user can execute another task before the governor starts reducing CPU frequency. This can eliminate the frequency bouncing discussed in the OnDemand section. Because of this timer, Interactive is also better prepared to utilize intermediate clockspeeds that fall between the minimum and maximum CPU frequencies. This is another pro-battery life benefit of Interactive.
However, because Interactive is permitted to spend more time at maximum frequency than OnDemand (for device performance reasons), the battery-saving benefits discussed above are effectively negated. Long story short, Interactive offers better performance than OnDemand (some say the best performance of any governor) and negligibly different battery life.
Interactive also makes the assumption that a user turning the screen on will shortly be followed by the user interacting with some application on their device. Because of this, screen on triggers a ramp to maximum clockspeed, followed by the timer behavior described above.
9: InteractiveX Governor:
Created by kernel developer "Imoseyon," the InteractiveX governor is based heavily on the Interactive governor, enhanced with tuned timer parameters to better balance battery vs. performance. The InteractiveX governor's defining feature, however, is that it locks the CPU frequency to the user's lowest defined speed when the screen is off.
10: Smartass
Is based on the concept of the interactive governor.
I have always agreed that in theory the way interactive works – by taking over the idle loop – is very attractive. I have never managed to tweak it so it would behave decently in real life. Smartass is a complete rewrite of the code plus more. I think its a success. Performance is on par with the “old” minmax and I think smartass is a bit more responsive. Battery life is hard to quantify precisely but it does spend much more time at the lower frequencies.
Smartass will also cap the max frequency when sleeping to 352Mhz (or if your min frequency is higher than 352 – why?! – it will cap it to your min frequency). Lets take for example the 528/176 kernel, it will sleep at 352/176. No need for sleep profiles any more!"
11: SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
12: Scary
A new governor wrote based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it's above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to 245Mhz, and if your min freq is higher than 245mhz, it will reset the min to 120mhz while screen is off and restore it upon screen awakening, and still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance. It will give the same performance as conservative right now, it will get tweaked over time.
13: Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
14: Smoothass:
The same as the Smartass “governor” But MUCH more aggressive & across the board this one has a better battery life that is about a third better than stock KERNEL
15: Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery
16: SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
17: Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
18: Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source.
The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
19: LionheartX
LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
20: Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors)
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
21: Hotplug Governor:
The “hotplug” governor scales CPU frequency based on load, similar to “ondemand”. It scales up to the highest frequency when “up_threshold” is crossed and scales down one frequency at a time when “down_threshold” is crossed. Unlike those governors, target frequencies are determined by directly accessing the CPUfreq frequency table, instead of taking some percentage of maximum available frequency.
The key difference in the “hotplug” governor is that it will disable auxillary CPUs when the system is very idle, and enable them again once the system becomes busy. This is achieved by averaging load over multiple sampling periods; if CPUs were online or offlined based on a single sampling period then thrashing will occur.
Sysfs entries exist for “hotplug_in_sampling_periods” and for “hotplug_out_sampling_periods” which determine how many consecutive periods get averaged to determine if auxillery CPUs should be onlined or offlined. Defaults are 5 periods and 20 periods respectively. Otherwise the standard sysfs entries you might find for “ondemand” and “conservative” governors are there.
Obviously, this governor is only available on multi-core devices.
22: Wheatley
in short words this govenor is build on “ondemand” but increases the C4 state time of the CPU and doing so trying to save juice.
23: Basically interactive governor with added smartass bits and variable (as opposed to fixed amout) frequency scaling, based on currently occuring cpu loads. Has, like smartass, a sleep profile built-in. See link for details on exact scaling.
24: Abyssplug governor is a modified hotplug governor.
25. BadAss Governor:
Badass removes all of this "fast peaking" to the max frequency. On a typical system the cpu won't go above 918Mhz and therefore stay cool and will use less power. To trigger a frequency increase, the system must run a bit @ 918Mhz with high load, then the frequency is bumped to 1188Mhz. If that is still not enough the governor gives you full throttle. (this transition should not take longer than 1-2 seconds, depending on the load your system is experiencing)
Badass will also take the gpu load into consideration. If the gpu is moderately busy it will bypass the above check and clock the cpu with 1188Mhz. If the gpu is crushed under load, badass will lift the restrictions to the cpu.
Credits goes to:
http://icrontic.com/discussion/95140...m-tuner-tegrak
http://forum.xda-developers.com/show....php?t=1369817
fantastic post! Should be a STICKY!!
+1, great find...lot of info, permission to add to the GNote super page?
bigjoe2675 said:
+1, great find...lot of info, permission to add to the GNote super page?
Click to expand...
Click to collapse
permission granted...
if anyone wants something changed or added to the first post let me know..ill edit or clean it up for a perfect list...
You forgot one, which happens to be my favorite
The GOVENATOR!!
{
"lightbox_close": "Close",
"lightbox_next": "Next",
"lightbox_previous": "Previous",
"lightbox_error": "The requested content cannot be loaded. Please try again later.",
"lightbox_start_slideshow": "Start slideshow",
"lightbox_stop_slideshow": "Stop slideshow",
"lightbox_full_screen": "Full screen",
"lightbox_thumbnails": "Thumbnails",
"lightbox_download": "Download",
"lightbox_share": "Share",
"lightbox_zoom": "Zoom",
"lightbox_new_window": "New window",
"lightbox_toggle_sidebar": "Toggle sidebar"
}
Makes all other governors piss their pants and flee in absolute terror
which one is the best.
on average user opinion wise?
I use
screen off:
conservative
Both minimum and max cpu at 192
Screen on:
On demand
Minimum 192
Maximum 1512
OutCastedSheep said:
which one is the best.
on average user opinion wise?
Click to expand...
Click to collapse
ondemand which is default seems to be between everything..its also user preference as some governors do different things from mutitasking better or better gaming experience, better battery...just to name a few
Excellent list. Very informative. I'm using Gnote i717 with sam.jh's custom canadian rom. It includes h0tw1r3's kernal and system tuner shows governors that can be added here. Just to name a few:
Pegasusq: Details @
http://forum.xda-developers.com/showpost.php?p=24233103&postcount=3
Adaptive: Cant find any solid info on this.
Fantasy: Cant find any solid info on this either
vaz55 said:
Excellent list. Very informative. I'm using Gnote i717 with sam.jh's custom canadian rom. It includes h0tw1r3's kernal and system tuner shows governors that can be added here. Just to name a few:
Pegasusq: Details @
http://forum.xda-developers.com/showpost.php?p=24233103&postcount=3
Adaptive: Cant find any solid info on this.
Fantasy: Cant find any solid info on this either
Click to expand...
Click to collapse
I've got a "Hipstreet FLARE" that's running the fantasy governor, I just opened the box and that's how it was.
Any way to rip it out and try it on another device? Is it just a kernel module?
vaz55 said:
Excellent list. Very informative. I'm using Gnote i717 with sam.jh's custom canadian rom. It includes h0tw1r3's kernal and system tuner shows governors that can be added here. Just to name a few:
Pegasusq: Details @
http://forum.xda-developers.com/showpost.php?p=24233103&postcount=3
Adaptive: Cant find any solid info on this.
Fantasy: Cant find any solid info on this either
Click to expand...
Click to collapse
Description Governor "Adaptive"
config CPU_FREQ_DEFAULT_GOV_ADAPTIVE
bool "adaptive"
select CPU_FREQ_GOV_ADAPTIVE
help
Use the CPUFreq governor 'adaptive' as default. This allows
you to get a full dynamic cpu frequency capable system by simply
loading your cpufreq low-level hardware driver, using the
'adaptive' governor for latency-sensitive workloads and demanding
performance.​
config CPU_FREQ_GOV_ADAPTIVE
tristate "'adaptive' cpufreq policy governor"
help
'adaptive' - This driver adds a dynamic cpufreq policy governor
designed for latency-sensitive workloads and also for demanding
performance.
This governor attempts to reduce the latency of clock
increases so that the system is more responsive to
interactive workloads in loweset steady-state but to
to reduce power consumption in middle operation level level up
will be done in step by step to prohibit system from going to
max operation level.
To compile this driver as a module, choose M here: the
module will be called cpufreq_adaptive.
For details, take a look at linux/Documentation/cpu-freq.
If in doubt, say N.​
Source: https://github.com/mozilla-b2g/kernel-android-galaxy-s2-ics/blob/master/drivers/cpufreq/Kconfig
Slim Governor?
Thankyou for putting together this list. I have a suggestion for an addition. I haven't been able to find specifics on slim governor, which is the default governor for slimkat 7.0. I'd like to know how it compares to interactive and conservative governors. I tried posting in the slimkat thread, but I don't have permission...

[Q] What is governor?

I've been reading the forums for a while, and i sometimes come across something like OC governor. What do "governor" mean? Is it like preset settings? Thank you for the help!
atishpatel2012 said:
I've been reading the forums for a while, and i sometimes come across something like OC governor. What do "governor" mean? Is it like preset settings? Thank you for the help!
Click to expand...
Click to collapse
1: OnDemand
2: OndemandX
3: Performance
4: Powersave
5: Conservative
6: Userspace
7: Min Max
8: Interactive
9: InteractiveX
10: Smartass
11: SmartassV2
12: Scary
13: Lagfree
14: Smoothass
15: Brazilianwax
16: SavagedZen
17: Lazy
18: Lionheart
19: LionheartX
20: Intellidemand
21: Hotplug
1: OnDemand Governor:
This governor has a hair trigger for boosting clockspeed to the maximum speed set by the user. If the CPU load placed by the user abates, the OnDemand governor will slowly step back down through the kernel's frequency steppings until it settles at the lowest possible frequency, or the user executes another task to demand a ramp.
OnDemand has excellent interface fluidity because of its high-frequency bias, but it can also have a relatively negative effect on battery life versus other governors. OnDemand is commonly chosen by smartphone manufacturers because it is well-tested, reliable, and virtually guarantees the smoothest possible performance for the phone. This is so because users are vastly more likely to ***** about performance than they are the few hours of extra battery life another governor could have granted them.
This final fact is important to know before you read about the Interactive governor: OnDemand scales its clockspeed in a work queue context. In other words, once the task that triggered the clockspeed ramp is finished, OnDemand will attempt to move the clockspeed back to minimum. If the user executes another task that triggers OnDemand's ramp, the clockspeed will bounce from minimum to maximum. This can happen especially frequently if the user is multi-tasking. This, too, has negative implications for battery life.
2: OndemandX:
Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers. This is not true for most of the other governors. I personally feel ondemand/ondemandx goes best with SIO I/O scheduler.
3: Performance Governor:
This locks the phone's CPU at maximum frequency. While this may sound like an ugly idea, there is growing evidence to suggest that running a phone at its maximum frequency at all times will allow a faster race-to-idle. Race-to-idle is the process by which a phone completes a given task, such as syncing email, and returns the CPU to the extremely efficient low-power state. This still requires extensive testing, and a kernel that properly implements a given CPU's C-states (low power states).
4: Powersave Governor:
The opposite of the Performance governor, the Powersave governor locks the CPU frequency at the lowest frequency set by the user.
5:Conservative Governor:
This biases the phone to prefer the lowest possible clockspeed as often as possible. In other words, a larger and more persistent load must be placed on the CPU before the conservative governor will be prompted to raise the CPU clockspeed. Depending on how the developer has implemented this governor, and the minimum clockspeed chosen by the user, the conservative governor can introduce choppy performance. On the other hand, it can be good for battery life.
The Conservative Governor is also frequently described as a "slow OnDemand," if that helps to give you a more complete picture of its functionality.
6: Userspace Governor:
This governor, exceptionally rare for the world of mobile devices, allows any program executed by the user to set the CPU's operating frequency. This governor is more common amongst servers or desktop PCs where an application (like a power profile app) needs privileges to set the CPU clockspeed.
7: Min Max
well this governor makes use of only min & maximum frequency based on workload... no intermediate frequencies are used.
8: Interactive Governor:
Much like the OnDemand governor, the Interactive governor dynamically scales CPU clockspeed in response to the workload placed on the CPU by the user. This is where the similarities end. Interactive is significantly more responsive than OnDemand, because it's faster at scaling to maximum frequency.
Unlike OnDemand, which you'll recall scales clockspeed in the context of a work queue, Interactive scales the clockspeed over the course of a timer set arbitrarily by the kernel developer. In other words, if an application demands a ramp to maximum clockspeed (by placing 100% load on the CPU), a user can execute another task before the governor starts reducing CPU frequency. This can eliminate the frequency bouncing discussed in the OnDemand section. Because of this timer, Interactive is also better prepared to utilize intermediate clockspeeds that fall between the minimum and maximum CPU frequencies. This is another pro-battery life benefit of Interactive.
However, because Interactive is permitted to spend more time at maximum frequency than OnDemand (for device performance reasons), the battery-saving benefits discussed above are effectively negated. Long story short, Interactive offers better performance than OnDemand (some say the best performance of any governor) and negligibly different battery life.
Interactive also makes the assumption that a user turning the screen on will shortly be followed by the user interacting with some application on their device. Because of this, screen on triggers a ramp to maximum clockspeed, followed by the timer behavior described above.
9: InteractiveX Governor:
Created by kernel developer "Imoseyon," the InteractiveX governor is based heavily on the Interactive governor, enhanced with tuned timer parameters to better balance battery vs. performance. The InteractiveX governor's defining feature, however, is that it locks the CPU frequency to the user's lowest defined speed when the screen is off.
10: Smartass
Is based on the concept of the interactive governor.
I have always agreed that in theory the way interactive works – by taking over the idle loop – is very attractive. I have never managed to tweak it so it would behave decently in real life. Smartass is a complete rewrite of the code plus more. I think its a success. Performance is on par with the “old” minmax and I think smartass is a bit more responsive. Battery life is hard to quantify precisely but it does spend much more time at the lower frequencies.
Smartass will also cap the max frequency when sleeping to 352Mhz (or if your min frequency is higher than 352 – why?! – it will cap it to your min frequency). Lets take for example the 528/176 kernel, it will sleep at 352/176. No need for sleep profiles any more!"
11: SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
12: Scary
A new governor wrote based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it's above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to 245Mhz, and if your min freq is higher than 245mhz, it will reset the min to 120mhz while screen is off and restore it upon screen awakening, and still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance. It will give the same performance as conservative right now, it will get tweaked over time.
13: Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
14: Smoothass:
The same as the Smartass “governor” But MUCH more aggressive & across the board this one has a better battery life that is about a third better than stock KERNEL
15: Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery
16: SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
17: Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
18: Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source.
The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
19: LionheartX
LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
20: Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors)
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
21: Hotplug Governor:
The Hotplug governor performs very similarly to the OnDemand governor, with the added benefit of being more precise about how it steps down through the kernel's frequency table as the governor measures the user's CPU load. However, the Hotplug governor's defining feature is its ability to turn unused CPU cores off during periods of low CPU utilization. This is known as "hotplugging."
Kanged from here: http://androidforums.com/xperia-mini-all-things-root/513426-android-cpu-governors-explained.html
Great post thanks very usefull:thumbup:
Sent from my HTC6435LVW using xda app-developers app

Categories

Resources