[Guide] Unsquash and resquash images - LG G Watch

Since our the G Watch uses the SquashFS for it's system image, I thought it would be helpful to know, how to modify it (Tested on Ubuntu 16.04).
Download and build googles squashfs tools:
Important: Yes, squashfs-tools/squashfs-tools is correct.
Code:
git clone https://android.googlesource.com/platform/external/squashfs-tools/
cd squashfs-tools/squashfs-tools/
make
Unsquash the image
Important: Use 'sudo' to preserve ownership of files
Code:
sudo unsquashfs -d path/to/unpacked/dir path/to/image
Modify the contents
Resquash
Code:
mksquashfs path/to/unpacked/dir path/to/final/image.img -comp gzip -b 131072 -no-exports
Final things:
There is a difference in blocks if you only unsquash and resquash the image (2869 for the original to 2873 for the resquashed one).
The links are not perfectly recreated, some permissions are lost, and times are modified.
The options for resquasing (-comp gzip -b 131072 -no-exports) are from the output of
Code:
unsquashfs -s path/to/image
You can preview the image and the permissions with
Code:
unsquashfs -ll path/to/image

Related

[Q] tf201 android/ubuntu duel boot?

i like my android for home use ,but as a IT maneger it will be nice to have linux on my prime as well. thar is any toturial that expline how to make my prime duel boot this 2 OS?
Overview
Follow this thread: Ubuntu | How-to install it on the Prime . NOTICE: developer-thread
Mainly there are 2 methods:
Flash-boot:
The thread starts with LilStevies work from Androidroot. There you have to flash the correspondent boot-kernel to start either android or linux. So far I don't know of an existing LilStevie rom with the kexec/kexecboot method (kexec: Linux as bootloader).
SDCard-existence-driven-init
Running linux with root_chooser_v1/2/3 form tux_mind which starts around thead-page 35 uses a modified init. Dualboot: with SDCard in slot -> linux | without SDCard in slot -> Android
See: Gentoo Wiki and hack-job if you are on Asus stock rom.
You can also use chroot method - but it's not dualboot.
I had method 1 running. But for me it is not working for daily useage. (reflashing s*c*s :angel
Now i will use the SDCard-existence-driven-init
I can't use the posted boot-blob because I'm not on the Asus stock kernel so Android starts but many processes crash so that it is not useable. I use the Energy-Rom with the Clemsyn-kernel. (Prime is unlocked, nvflash-activated and rooted)
Be warned: You could damage/ brick your device following the instructions. Backup all!! A whole nvflash backup is reccomended. Be carful. Use your brain. I'm not responsible for any damages.
Up to now I tested my own 'unchanged' fastboot boot-blob:
Enter APX-Mode: put in USB cable + hold [Vol up]+[Power] (until vibrating, screen stays black)
Code:
$ sudo wheelie -r --blob blob.bin
$ sudo nvflash -r --read 6 blobNv.LNX
$ sudo nvflash -r --go
Unpack blob:
Code:
$ abootimg -x blobNv.LNX
repack blob (be sure you have blobpack for TF201 i.e. from CM10 repo):
Code:
$ abootimg --create testNv.LNX -k zImage -r initrd.gz -f bootimg.cfg
$ blobpackTF201 testFb.blob LNX testNv.LNX
start into fastboot-mode: put in USB cable [Vol down]+[Power] (until you can choose fastboot/USB symbol)
Code:
$ fastboot -i 0x0b05 flash boot testFb.blob
$ fastboot -i 0x0b05 reboot
The blob flashes well - I can see the blue progerss-bar. By the way: this produces a backup blob of the bootpartition which you can reflash via fastboot to start android if sth went wrong.
Now I need to insert the root_chooser init into the ramdisk to get linux from SDCard started...
I got a half working root_chooser. It starts android but not linux.
Here is what I did to modify the boot-loader with Clemsyn kernel and the modified init from tux_mind:
At first I read the LNX patition from the TF201 (unlocked, nvflash-able/wheelie, rooted):
Boot into APX-mode:
Code:
$ sudo bin/wheelie -r --blob bin/blob.bin
$ sudo bin/nvflash -r --read 6 blobNv.LNX
$ sudo bin/nvflash -r --go
Unpack the blob:
Code:
$ abootimg -x blobNv.LNX
You will get bootimg.cfg, initrd.img and zImage.
Now unpack the initial ramdisk:
Code:
$ mkdir ramdisk
$ cd ramdisk
$ gzip -dc ../initrd.img | cpio -i
Clone tux_minds data and copy your extracted custom rom ramdisk to newroot:
Code:
$ cd ..
$ git clone https://github.com/tux-mind/tf201-dev.git
$ rm -r tf201-dev/initramfs/newroot/*
$ cp -r ramdisk/* tf201-dev/initramfs/newroot/
[I][SIZE="2"]#edit 22 feb 2013[/SIZE][/I]
$ cd tf201-dev/initramfs
$ mkdir data && mkdir dev && mkdir sys
$ cd ../../..
[I][SIZE="2"]#edit end[/SIZE][/I]
OPTIONAL start compile root_chooser/init via crosscompile
Change the compiler in Makefile. I use Ubuntu with arm-linux-gnueabi-gcc (maybe it would be better to use arm-linux-gnueabihf-gcc) from the repo for crosscompiling:
Edit Makefile in tf201-dev/root_chooser:
Code:
#--Head-------------------- snip
CC=arm-linux-gnueabi-gcc
LD=arm-linux-gnueabi-ld
#CC=arm-unknown-linux-gnueabi-gcc
#LD=arm-unknown-linux-gnueabi-ld
#-------------------------- snap
Now compile and copy it to the initramfs:
Code:
$ make v2
$ cp root_chooser ../initramfs/init
OPTIONAL end
Now pack the initrd, make a blob and flash it to the TP
Code:
$ cd tf201-dev/initramfs
$ find . | cpio --create --format='newc' > ../../myinitrd
$ cd ../..
$ gzip myinitrd
$ chmod 777 myinitrd.gz
$ abootimg --create testNv.LNX -k zImage -r myinitrd.gz
$ bin/blobpackTF201 testFb.blob LNX testNv.LNX
Start into fastbootmode:
Code:
$ fastboot -i 0x0b05 flash boot testFb.blob
$ fastboot -i 0x0b05 reboot
Start into andorid open Terminal Emulator and type:
Code:
$ su
# vi /data/.boot
/dev/mmcblk1p1:/:/sbin/init
[esc] :wq
I followed this guide to set up my sdCard. That's it. Insert sdCard, reboot.
Android starts but not Linux from the sdCard. I got the following message back in android:
Code:
[I][B]FIXED[/B][SIZE="2"] see edit 22 feb 2013[/SIZE][/I]
[COLOR="Silver"]$ cat /boot_chooser.log
unable to mount /sys - No such file or directory[/COLOR]
New error message (inserted sdCard occurs boot-loops, remove sdCard to start android):
Code:
$ cat /boot_chooser.log
unable to mount /dev/mmcblk1p1 on /newroot - No such file or directory
I'm feeling so close to fire up Linux on my Transformer. Who can give me hint?
gophix said:
New error message (inserted sdCard occurs boot-loops, remove sdCard to start android):
Code:
$ cat /boot_chooser.log
unable to mount /dev/mmcblk1p1 on /newroot - No such file or directory
Click to expand...
Click to collapse
got it yeah! linux and android starting up! BUT VERY INSTABILE !!!
I had to use another sdCard and recompiled the kernel with some flags activated:
My hama 16GB class 10 doesn't seem to work well with the TP. I copied some data to the sdcard in android, there the I/O stream had several stops while copying data. Some forum members reported I/O errors in the system log (dmesg). I didn't have that errors but a variing throughput while copyint to sdCard.
The kernel I prepared this way:
Code:
downloading Clemsyn-kernel source:
$ wget https://www.dropbox.com/s/pjqd2b1edn6fiwu/tfcombofinal.zip
$ unzip tfcombofinal.zip
Get the actual kernel .config form the TP via adb and compile the kernel (I didn't patch, because I got error while compiling the kernel). I diffed my config to tux_minds and aktivated some flags.
Code:
$ adb pull /proc/config.gz
$ gzip -d config.gz
$ cp config tfcombofinal/.config
$ cd tfcombofinal
// patching should be like this:
// $ wget https://github.com/tux-mind/tf201-dev/raw/master/v2/kernel/JB15.patch
// $ patch -p1 < ../JB15.patch(v1/v2?) !!! do not patch !!!
$ make menuconfig
$ make -j4 ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-
I didn't compile the modules.
After that I packed my kernel from tfcombo/arch/arm/boot/zImage into the blob ($ abootimg --create testNv.LNX -k zImage -r myinitrd.gz)
VERY INSTABILE !!! means: the linux starting kernel was compiled with hardfloat (arm-linux-gnueabihf-).Linux starts up and responds "a littel bit"; android starts up; work 5 mins and reboots.
So both are working the developer way
I will test an own armSF kernel next time (the way described in this post, up to now I run instable on armHF) and report if this makes android stable and additionally starts up linux.
The dual-boot works fine.
Look at lifeinarootshell.
The actual version root_chooser v6 starts linux (from SDcard, microSDcard, USB, loop-device, internal folder) and android with different kernels
It has a cofigurable bootloader via kexec.
Linux distributions (gentoo, ubuntu, arch linux, ...) are also available and are growing more and more in stability and performance.
gophix said:
The dual-boot works fine.
Look at lifeinarootshell.
The actual version root_chooser v6 starts linux (from SDcard, microSDcard, USB, loop-device, internal folder) and android with different kernels
It has a cofigurable bootloader via kexec.
Linux distributions (gentoo, ubuntu, arch linux, ...) are also available and are growing more and more in stability and performance.
Click to expand...
Click to collapse
Getting xorg to work on archlinux is somewhat messy at the moment. The tegra3 driver is built for an old xorg-server, and is not compatible with the new one in the archlinux repositories. I was able to make it work by recompiling xorg-server, though. I guess it would be easier if someone made an aur package with the old xorg-server.
Thank you very much gophix for your nice guide in the second post :fingers-crossed:
However, since the first attempts to get linux based distributions working on the TF201 like ubuntu or arch linux, there was not much progress anymore I feel this is somehow pitty due to the fact that the Prime is still a good and reasonable tablet. And it could be much more if there would be not these horrible restrictions set by Asus like encrypted bootloader.
But I don't want to criticise mainly in my post. Instead, I would like to promote a constructive discussion so that the TF201 receives new life
How about creating a new ubuntu image based on 14.04 since it receives long term support? Unfortunately, my knowledge is still rather limitted so far to do this by myself.
And what is your opinion, to go alternatively another way by using the xubuntu installation (13.04) developed for the TF300tg as shown here:
http://forum.xda-developers.com/showthread.php?t=2190847
As far as I know, both devices are quite similar. Or are there any good arguments to deny this idea?

[GUIDE][HOW TO][Xperia P/U] Unpack & Repack Kernel.elf

Hi everyone, I didn't find a full guide for unpacking & repacking new kernel.elf, they were somehow out-dated.
so I'm here to share with you my knowledge.
First Post : Unpack kernel
Second Post : Unpack ramdisk
Third Post : Repack ramdisk
Fourth Post : Repack kernel
1st : Requirements​
1) the kernel you want to unpack
2) 7z -->
Code:
sudo apt-get install p7zip
2nd : procedure​
lets assume our working directory is "~/kernel" and the kernels name is "kernel.elf".
now open terminal and write down the following code.
Code:
mkdir ~/kernel
cp /path/to/file ~/kernel/kernel.elf
cd ~/kernel
7z e kernel.elf
now you will get 0, 1, 2, 3.
0 --> zImage
1 --> ramdisk
2 --> cmdline
3 --> cert
Code:
mv 0 kernel.elf-zImage
mv 1 kernel.elf-ramdisk.gz
mv 2 kernel.elf-cmdline
mv 3 kernel.elf-cert
now you have successfully unpacked the kernel.
[B]Second Post : Unpack ramdisk[/B]
1st : Requirements​
1) the ramdisk we got from the first post.
2) file -->
Code:
sudo apt-get install file
3) most probably gzip -->
Code:
sudo apt-get install gzip
2nd : procedure​
Code:
file -b kernel.elf-ramdisk.gz
most probably you will get "gzip compressed data".
if not read the notes at the end of this post then resume reading.
Code:
gzip -dk kernel.elf-ramdisk.gz
now you will get cpio archive "kernel.elf-ramdisk".
Code:
mkdir ramdisk
mv kernel.elf-ramdisk ramdisk
cd ramdisk
cpio -i < kernel.elf-ramdisk
rm kernel.elf-ramdisk
cd ..
now you successfully extracted the ramdisk.
3rd : notes​
it seems your ramdisk isn't gzip compressed.
if you got "LZMA compressed data" from file command
then it is "lzma" compressed
lzma -->
Code:
sudo apt-get install xz-utils
to uncompress use
Code:
mv kernel.elf-ramdisk.gz kernel.elf-ramdisk.lzma
xz -dk kernel.elf-ramdisk.lzma
now you chould resume unpacking process.
Third Post : repack ramdisk
1st : Requirements​
1) the ramdisk folder we extracted from second post.
2) cpio
3) the tool we used for unpacking ramdisk (gzip) (check notes for other compression types)
2nd : procedure​
Code:
cd ramdisk
find|cpio -o -H newc|gzip >../kernel.elf-new_ramdisk.gz
cd ..
now you successfully repacked the ramdisk.
3rd : notes​
well it is recommended to repack the ramdisk with the original ramdisk format
because other formats maybe not supported
but no problem trying other formats as long as they are supported
for lzma :
Code:
cd ramdisk
find|cpio -o -H newc|xz --format=lzma >../kernel.elf-new_ramdisk.lzma
cd ..
Fourth Post : repack kernel
1st : Requirements​
1) the files we unpacked from the kernel from first post (zImage, cmdline, we won't be needing the extracted cert).
2) the ramdisk folder we repacked from third post.
3) the original kernel.elf for injecting cert.
4) mkelf.py Sony's or Doomlord's
github.com/sonyxperiadev/device-sony-lt26/blob/master/tools/mkelf.py
github.com/DooMLoRD/build_tools/blob/master/bin/mkelf.py
2nd : procedure​
now we gonna repack kernel.elf (without cert yet).
Code:
mkelf.py -o kernel.elf-new [email protected] [email protected],ramdisk [email protected]
now comes the tricky part.
Code:
printf "\x04"|dd of=kernel.elf-new bs=1 seek=44 count=1 conv=notrunc 2>/dev/null
dd if=kernel.elf of=kernel.elf-dumped_cert bs=1 skip=148 count=1106 2>/dev/null
cat kernel.elf-dumped_cert|dd of=kernel.elf-new bs=1 seek=148 count=1106 conv=notrunc 2>/dev/null
rm kernel.elf-dumped_cert
now you successfully repacked the kernel .
Hi, would this method work on the Xperia GO? Would I have to change the command line arguments in order for it to work for my Xperia GO?
Hukanawa said:
Hi, would this method work on the Xperia GO? Would I have to change the command line arguments in order for it to work for my Xperia GO?
Click to expand...
Click to collapse
It would be great if you linked me to the kernel you want to unpack/repack.
Should work for Xperia GO
I grabbed the kernel "in CM11 weekly 20 for Xperia GO by XperiaSTE Team", and found the kernel structure is similar to Xperia P/U.
So yeah this guide should work for Xperia GO.
I hope this was helpful.
Very nice and helpful guide.
Worked for ARM64 kernel.elf also.

[S905] WeTek Hub Boot Image Modification

I recently got my hands on a WeTek Hub. All round quite a nice little box, but the default lowmemorykiller settings are a little annoying, and sometimes result in the boot failing because the kernel decided to kill one of the startup processes. I'm trying to modify the settings in the init.rc, but I'm having a spot of trouble with a boot loop after repacking the boot image.
I copied the image off the device by using dd to extract the partition to a file, and then used the built-in FTP server to copy it off the device, and extracted it using unmkbootimg. after unzipping, extracting, modifying, and re-packing, I used mkbootimg to recreate the image, and dd'd it back onto the box (commands below).
Code:
dd if=/dev/block/boot of=/sdcard/boot.img
Code:
./unmkbootimg boot.img
mv initrd.img{,.gz}
gunzip initrd.img.gz
mkdir initrd
cp initrd.img initrd
cd initrd
cpio -i < initrd.img
rm initrd.img
# change stuff here
find . | cpio -o -H newc > ../initrd.cpio
cd ..
gzip initrd.cpio
./mkbootimg --kernel kernel.gz --ramdisk initrd.img.gz -o new_boot.img
Code:
dd if=/sdcard/new_boot.img of=/dev/block/boot
Unfortunately, that left me with a flashing WeTek logo as the it continuously rebooted. examining the logs from u-boot didn't give anything useful, but luckily I was able to get it into recovery and flash Ricardo's Android TV ROM back on there. Unfortunately, I'm still stuck with the original boot failure issue. Any clues as to what I've missed?
I do so
Code:
cd boot
../mkboot boot.img unpaсk
cd unpack/ramdisk
find . | cpio -o -H newc | gzip > ../ramdisk.packed
[I][B]# (edit size ramdisk in /boot/unpack/img_info file)[/B][/I]
cd ../..
../mkboot unpack boot.img
all is working

Chromium OS building

After building Chromium OS kernel 4.14.96 & my inability to figure out how to properly deploy it as an update to an existing Chromium OS installation like Arnoldthebat v72 (with Chrome OS Kernel 4.14.83)
efforts here -
https://forum.xda-developers.com/showpost.php?p=78830818&postcount=3
I will post here my efforts at building the full Chromium OS with the latest available Kernel - I will try & start with same version as arnoldthebat i.e. v72 which has now reached stable...
There will be a lot of editing here, as it's a learning curve to me...
First is to clone the Google Chrome OS repo -
I was given this link to learn how to do this -
https://chromium.googlesource.com/chromiumos/docs/+/master/developer_guide.md
As for building Kernel for ATB v72 - I will be keeping a log of instructions here...
I do the work from within a Ubuntu xenial 16.04.xx box as suggested by the documentation,
Preparation instructions:
Create a folder where the code will be stored (they suggest chromeos) I used code
from an ext4 partition/disk with plenty of space (mine 150 GB+)
$ mkdir code
input instructions to get to clone the repo later to reach here:
$ sudo apt-get install repo
$ sudo apt-get install git-core gitk git-gui curl lvm2 thin-provisioning-tools \
python-pkg-resources python-virtualenv python-oauth2client
Install depot_tools
$ git config --global user.name "John Doe"
$ git config --global user.email "[email protected]"
$ git config --global core.autocrlf false
$ git config --global core.filemode false
$ # and for fun!
$ git config --global color.ui true
Tweak your sudoers configuration
cd /tmp
cat > ./sudo_editor <<EOF
#!/bin/sh
echo Defaults \!tty_tickets > \$1 # Entering your password in one shell affects all shells
echo Defaults timestamp_timeout=180 >> \$1 # Time between re-requesting your password, in minutes
EOF
chmod +x ./sudo_editor
sudo EDITOR=./sudo_editor visudo -f /etc/sudoers.d/relax_requirements
Configure git
git config --global user.email "[email protected]"
git config --global user.name "Your Name"
Verify that your default file permissions (umask) setting is correct
put the following line into your ~/.bashrc
umask 022
preparation for enough disk space
in folder code/
sudo dd if=/dev/zero of=swapfile bs=1024 count=$((1024*3000))
mkswap swapfile
sudo swapon swapfile
git config --global http.sslVerify false
git config --global http.postBuffer 1048576000
initialise the repo
$ repo init
$ repo init -u https://chromium.googlesource.com/chromiumos/manifest.git --repo-url https://chromium.googlesource.com/external/repo.git [-g minilayout]
get the source code
$ repo sync -j4
getting/syncing the source code took a long time as it kept failing...
I am now in this position with the source code in code/
I will fill in gaps of instructions I missed later...
Create a chroot
make sure depot_tools/ is inside the folder code/: code/depot_tools
temporary put depot_tools in the path
export PATH=$PATH:depot_tools
$ cros_sdk
... this will take some time...
NOTICE: Mounted .../code/chroot.img on chroot
NOTICE: Downloading SDK tarball..
All done
INFO cros_sdk:make_chroot: Elapsed time (make_chroot.sh): 74m37s
cros_sdk:make_chroot: All set up. To enter the chroot, run:
$ cros_sdk --enter
CAUTION: Do *NOT* rm -rf the chroot directory; if there are stale bind
mounts you may end up deleting your source tree too. To unmount and
delete the chroot cleanly, use:
$ cros_sdk --delete
(cr) ((c62d307...)) [email protected] ~/trunk/src/scripts $
now comes the real stuff...
Notes -
some extra commands might be needed to get this working:
$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install linux-generic
$ sudo apt-get install fakeroot build-essential crash kexec-tools makedumpfile kernel-wedge
$ sudo apt-get install git-core libncurses5 libncurses5-dev libelf-dev asciidoc binutils-dev
...
Hello, My guide should fill in the blanks for you (Specifically the Over The Air Upgrades) - https://kmyers.me/blog/chromeos/a-g...s-distribution-with-ota-updates-and-crostini/
could someone please tell me if there is a rpm file so chromium os could be installed on top of ubuntu using alien cause terminal too difficult for noobs to understand but rpm and alien super easy
ghostdogg49504 said:
could someone please tell me if there is a rpm file so chromium os could be installed on top of ubuntu using alien cause terminal too difficult for noobs to understand but rpm and alien super easy
Click to expand...
Click to collapse
No, ChromiumOS is a operating system that either replaces your default operating system or that you dual boot into. It is not simply a application that you can install. If you want to run it without installing it, you could in theory build it yourself and convert the image to a virtual machine image and run it in Qemu or VirtualBox.
KMyers said:
No, ChromiumOS is a operating system that either replaces your default operating system or that you dual boot into. It is not simply a application that you can install. If you want to run it without installing it, you could in theory build it yourself and convert the image to a virtual machine image and run it in Qemu or VirtualBox.
Click to expand...
Click to collapse
fydeos has a installer in fydeos store with dualboot option but its in chinese

[DEV] Ubuntu 18.04 LTS Bionic (Linux for Tegra) for SHIELD Android TV

This is a full featured port of NVIDIA L4T R32.7.2 (Ubuntu 18.04) for the SHIELD TV (2015, 2017). It has full hardware support including:
GPU acceleration
Wifi/Bluetooh
USB 3.0
HDMI with audio
microSD (supported models)
Power management
etc
Download​Download Latest (R32.7.2, 07/09/22)
Details​The main challenge in this port was getting the right kernel version to match with the on-device DTB. The DTB is structured in a way that Cboot must be able to parse (and modify it) and then Linux kernel must be able to parse it as well. There are various issue with previous documented methods of flashing a Jetson DTB. NVIDIA stopped distributing SHIELD TV (Foster) DTBs with L4T releases years ago so you would have to manually port a newer DTB or be stuck with an older kernel. Flashing an (years) older DTB is not an option because a newer Cboot will fail to parse it and you'll end up with a brick. Flashing a custom DTB is dangerous for this reason as well. Flashing an older Cboot is not possible due to signature requirements even on an unlocked device. So we are stuck with one option: build a L4T kernel around the device's Android DTB.
NVIDIA maintains two forks of Linux for Tegra X1. The L4T kernel and the Android (downstream) kernel are not 1-to-1 compatible. DTB property names can differ, ioctl structure sizes can differ, etc. I tried various ways to cleanly merge the two and ended up with the following working strategy:
Kernel 4.9 + NVIDIA drivers from Android fork
Build config from L4T release hand merged with options from the Android TV kernel
NVGPU drivers from L4T fork (due to lack of source for and need for compatibility with userland drivers)
Initramfs from L4T release
I also had to port some patches from one fork to the other (especially for NVGPU). The end result is a kernel that combines both forks and therefore is relatively stable and fully featured.
Booting​
The build is tested with the 9.0.0 and 9.1.0 release. It is recommended that you update to 9.0.0.
Note that once you update Cboot, you cannot downgrade to a lower version anymore! If you do not update, some things may not work properly due to the DTB differences noted above however, any relatively "modern" build may still work.
You need a USB drive with at least 8GB of free space. Flash rootfs.img to the first partition (replace sdX1 with your USB drive partition):
Code:
$ sudo dd if=rootfs.img of=/dev/sdX1 bs=1MiB
Make sure your SHIELD TV is unlocked and connected to fastboot.
Either boot the kernel directly:
Code:
$ fastboot boot boot.img
Or you may also flash the kernel if you want to:
Code:
$ fastboot flash boot boot.img
$ fastboot reboot
The initramfs will attempt to boot from the following devices (in order):
1. sda1: First partition of external USB on 16GB model
2. sdb1: First partition of external USB on 500GB model
3. mmcblk2p1: First partition of microSD on supported models
4. mmcblk0p29: Userdata partition of eMMC on 16GB model
5. sda32: Userdata partition of HDD on 500GB model
6. sda33: Partition 33 of HDD on 500GB model (partition table modification needed)
7. sda34: Partition 34 of HDD on 500GB model (partition table modification needed)
8. mmcblk0p19: System partition of eMMC on 16GB model (too small to hold rootfs unless partition table is modified)
After installation, you should resize the partition if your device is > 8GB (replace sdX1 with your installation device).
Code:
$ sudo e2fsck -f /dev/sdX1
$ sudo resize2fs /dev/sdX1
Flashing to internal eMMC​
If you wish to flash rootfs to your internal eMMC, you need to first install to a USB and boot into Ubuntu. Flashing from fastboot will NOT work due to some eMMC issues (I think Cboot does not respect the block remap).
The following will flash to the userdata partition and will WIPE any existing data on the device!
Code:
$ sudo dd if=rootfs.img of=/dev/mmcblk0p29 bs=1MiB
$ sudo e2fsck -f /dev/mmcblk0p29
$ sudo resize2fs /dev/mmcblk0p29
You can follow similar steps to flash to sda32 on a 500GB model. Follow the steps in the first section to flash boot.img.
Uninstalling​
As long as you didn't touch the other partitions, you can easily restore Android TV with the recovery images.
Code:
$ fastboot erase userdata
$ fastboot flash boot nv-recovery-image-shield-atv-9.0.0/boot.img
​Troubleshooting​The USB/microSD does not boot and is stuck at a blinking cursor
Make sure you wait long enough (at least five minutes).
Make sure your USB drive (or microSD) is formatted with MBR with a single partition. You should be writing to /dev/sdX1 (X is some letter) with a "1" at the end. Do not write to /dev/sdX.
Try to mark the first partition as bootable.
Manual Build​Download Latest (R32.7.2, 07/09/22)
Prerequisite​
Linux for Tegra R32.7.2
Linux for Tegra R32.7.2 Sources
Linux for Tegra R32.7.2 Root Filesystem
Jetson GCC Toolchain 32.2
NVIDIA SHIELD ANDROID TV 2015 Recovery OS Image 9.0.0
Utilities (apt install): simg2img, git, fastboot, abootimg
Building the kernel​
1. Install the toolchain.
Code:
$ wget -O toolchain.tar.xz https://developer.nvidia.com/embedded/dlc/l4t-gcc-7-3-1-toolchain-64-bit
$ tar xpf toolchain.tar.xz
$ sudo mv gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu /opt/l4t-toolchain
2. Fetch the SHIELD TV Android kernel sources.
Code:
$ git clone --depth 1 https://nv-tegra.nvidia.com/r/linux-4.9.git -b rel-shield-r-9.0.2-opensource-4.9 linux-4.9
$ git clone --depth 1 https://nv-tegra.nvidia.com/r/linux-nvidia.git -b rel-shield-r-9.0.2-opensource nvidia
3. Fetch the Linux For Tegra NVGPU sources.
Code:
$ wget https://developer.nvidia.com/embedded/l4t/r32_release_v7.2/sources/t210/public_sources.tbz2
$ tar xpf public_sources.tbz2
$ tar xpf Linux_for_Tegra/source/public/kernel_src.tbz2
$ mv kernel/nvgpu nvgpu
You should have three directories: linux-4.9, nvidia, and nvgpu
4. Patch the sources.
Code:
$ cat patches/kernel-4.9/*.patch | patch -p1 -dlinux-4.9
$ cat patches/nvidia/*.patch | patch -p1 -dnvidia
$ cat patches/nvgpu/*.patch | patch -p1 -dnvgpu
5. Build the kernel and install the modules.
Code:
$ export CROSS_COMPILE=/opt/l4t-toolchain/bin/aarch64-linux-gnu-
$ export ARCH=arm64
$ mkdir -p Linux_for_Tegra/rootfs/
$ pushd linux-4.9
$ make shieldtv_defconfig
$ make -j$(nproc) zImage
$ make -j$(nproc) modules
$ make modules_install INSTALL_MOD_PATH=../Linux_for_Tegra/rootfs/
$ sudo chown -R root:root ../Linux_for_Tegra/rootfs/lib
$ popd
Building Root Filesystem​
1. Extract jetson-210_linux_r32.7.2_aarch64.tbz2 and tegra_linux_sample-root-filesystem_r32.7.2_aarch64.tbz2.
Code:
$ tar xpf jetson-210_linux_r32.7.2_aarch64.tbz2
$ pushd Linux_for_Tegra/rootfs/
$ sudo tar xpf ../../tegra_linux_sample-root-filesystem_r32.7.2_aarch64.tbz2
$ sudo touch etc/nv_boot_control.conf
Note the use of sudo for the last two commands. This is required for file permissions to be correct. The touch at the end resolves a bug in NVIDIA's code that resulted in the installer not launching.
2. Install the filesystem.
Code:
$ cd ..
$ sudo ./apply_binaries.sh
$ popd
3. To enable Wifi and NVDEC, need to first convert vendor.img downlaoded from the SHIELD recovery image to an ext4 image.
Code:
$ simg2img nv-recovery-image-shield-atv-9.0.0/vendor.img vendor-raw.img
4. Next mount the image.
Code:
$ mkdir vendor
$ sudo mount -o loop vendor-raw.img vendor
5. Copy the firmware over.
Code:
$ sudo cp vendor/firmware/bcmdhd_clm_foster.blob Linux_for_Tegra/rootfs/lib/firmware/brcm/bcmdhd.clm_blob
$ sudo cp vendor/firmware/fw_bcmdhd.bin Linux_for_Tegra/rootfs/lib/firmware/brcm/fw_bcmdhd.bin
$ sudo cp vendor/firmware/nvram_foster_e_4354.txt Linux_for_Tegra/rootfs/lib/firmware/brcm/nvram.txt
$ sudo cp vendor/firmware/tegra21x/* Linux_for_Tegra/rootfs/lib/firmware/tegra21x/
$ sudo cp vendor/firmware/tegra21x/vic04_ucode.bin Linux_for_Tegra/rootfs/lib/firmware/nvidia/tegra210/
$ sudo umount vendor
6. Create and mount a new ext4 image. Note that we will create 8GiB image which should be enough to hold the root filesystem. After you flash it to your device and boot successfully, you'll want to run resize2fs.
Code:
$ dd if=/dev/zero of=rootfs.img bs=1MiB count=8196
$ mkfs.ext4 rootfs.img
$ mkdir mount
$ sudo mount -o loop rootfs.img mount
7. Copy the filesystem to the disk image.
Code:
$ sudo mv Linux_for_Tegra/rootfs/* mount/
$ sudo umount mount
Building boot image​
1. Extract the existing initramfs.
Code:
$ mkdir initramfs
$ pushd initramfs
$ cat Linux_for_Tegra/bootloader/l4t_initrd.img | gunzip -c | cpio -i
2. Patch init.
Code:
$ cp patches/initramfs/init init
3. Rebuild the image.
Code:
$ find ./ | cpio -H newc -o -R root:root | gzip -9 -c > ../initramfs.img
4. Build boot.img
Code:
$ abootimg --create boot.img -f patches/bootimg.cfg -k linux-4.9/arch/arm64/boot/zImage -r initramfs.img
I've updated the download to fix an issue I found with connecting to 5GHz wifi. Using the other nvram.txt fixed it. I also noticed that NVENC/NVDEC doesn't work properly and am unsure if it's a kernel issue or a L4T issue. I tried building with nvdec bootloader disabled and used L4T's ns firmware and it still didn't work.
EDIT: Made another update to fix the NVENC/NVDEC issue. Additionally, the led lightbar control driver is added in. I also made the following systemd script to disable the lightbar at boot.
Code:
[Unit]
Description=Disable the lightbar
After=multi-user.target
[Service]
Type=oneshot
RemainAfterExit=yes
ExecStartPre=-/bin/sh -c "/sbin/rmmod leds-cy8c && /sbin/modprobe leds-cy8c"
ExecStart=/bin/sh -c "echo 0 > /sys/class/leds/led_lightbar/brightness"
ExecStop=/bin/sh -c "echo 255 > /sys/class/leds/led_lightbar/brightness"
[Install]
WantedBy=multi-user.target
Is this a fully working ubuntu desktop OS experience or is this a Kernel for the shield?
EgomafiaX said:
Is this a fully working ubuntu desktop OS experience or is this a Kernel for the shield?
Click to expand...
Click to collapse
Full Ubuntu 18.04, it’s not just a kernel. I’ve been using it for the past week and haven’t run into any issues so far. You can try it out without modifying anything by flashing rootfs.img to a usb drive and booting the kernel from fastboot.
Very Interesting, I just got my shield last week and i wanna try some few things on it. Don’t have any experience with flashing whatsoever
What's performance like? I was thinking of buying a new SBC but this could be just what I am looking for
moshtin said:
What's performance like? I was thinking of buying a new SBC but this could be just what I am looking for
Click to expand...
Click to collapse
Nvidia SHIELD TV Benchmarks in Ubuntu Shows Core i3 Like Performance - CNX Software
Nvidia SHIELD Android TV was announced this March with Nvidia Tegra X1 octa-core Cortex A57 + A53 processor. So far, I had not seen any Ubuntu or other
www.cnx-software.com
Hi!
Thanks for your work.
This seems promising. Any chance anything similar should work on SHIELD TV Pro (2019)?
I compared recovery images provided by NVIDIA and I did not come across many differences between vendor binaries so I guess there is won't be any issue with the roottfs and kernel.
However on the SHIELD TV Pro, the boot.img is twice as big and the recovery image seems to contain a DTB image (mdarcy.dtb.img) and a vbmeta.img. I suspect the boot process to be somewhat different on this plateform.
Did anyone manage to get anything working on a SHIELD TV Pro?
yifanlu said:
$ pushd kernel-4.9
Click to expand...
Click to collapse
I guess you meant:
Code:
$ pushd linux-4.9
yifanlu said:
$ sudo mv Linux_for_Tegra/rootfs/rootfs/* mount/
Click to expand...
Click to collapse
and
Code:
$ sudo mv Linux_for_Tegra/rootfs/* mount/
Also the shieldtv_defconfig is located in arm/ instead of arm64/ in the patches you provide.
I tried the instructions from the first post on a Shield TV (2017) model and after doing "fastboot boot boot.img" the screen goes black with a blinking underscore on the top left and gets stuck there.
Any idea on what could be wrong? I dd'ed the rootfs.img to a usb stick attached to the usb port adjacent to the hdmi port. The usb A->A cable for fastboot/adb is attached to the usb port away from the hdmi cable.
chaitan3 said:
I tried the instructions from the first post on a Shield TV (2017) model and after doing "fastboot boot boot.img" the screen goes black with a blinking underscore on the top left and gets stuck there.
Any idea on what could be wrong? I dd'ed the rootfs.img to a usb stick attached to the usb port adjacent to the hdmi port. The usb A->A cable for fastboot/adb is attached to the usb port away from the hdmi cable.
Click to expand...
Click to collapse
I also seem to have hit same roadblock, did you succed with this.
kihmathi said:
I also seem to have hit same roadblock, did you succed with this.
Click to expand...
Click to collapse
No, I have not been able to proceed. @yifanlu any hints on what we could do to debug?
I only have a 2015 shieldtv but I read the hardware are the same. Maybe I was wrong and there’s some kernel changes needed. I would diff the defconfig between the latest android release for both and see what the differences are. Then add those to the config.
EDIT: I downloaded the recovery image for 2017 and compared the kernel defconfig and it’s identical. That means the kernel isn’t the issue. My next guess would be the init script I wrote. Maybe the dev number is different on 2017?
Can confirm, I have the same issue on model P2897 not pro.
In my init script, I wait 10s for the root device to show up before giving up and trying the next one. Perhaps this isn’t long enough?
If you update the init file inside the initramfs, there is on line 71 “while [ ${count} -lt 20 ]” maybe change that to “while [ ${count} -lt 100 ]” to try 100 times (with 0.2s in between).
Could anyone here running this image try out https://github.com/cobalt2727/L4T-Megascript? It's been tested against the base model Nintendo Switch and a Jetson Nano, but no Shield hardware so far (although it should perfectly support it in theory)
yifanlu said:
In my init script, I wait 10s for the root device to show up before giving up and trying the next one. Perhaps this isn’t long enough?
If you update the init file inside the initramfs, there is on line 71 “while [ ${count} -lt 20 ]” maybe change that to “while [ ${count} -lt 100 ]” to try 100 times (with 0.2s in between).
Click to expand...
Click to collapse
I tried this on my 2017 shield, didn't fix the issue, there is a blinking underscore on the top left. Is there any way to get logs, or show some debug messages on the screen?

Categories

Resources