Battery charging at 4,300mV is healthy? - Xiaomi Poco F1 Questions & Answers

Charging the poco fone using the bundled charger charges at around 4,300 mV. Is it healthy for the phone battery?? I use accubattery app and it shows this voltage in red colour, which makes me concerning about the longetivity of the battery life...

POCO F1 supports Quick Charge 3.0 featuring INOV (Intelligent Negotiation for Optimum Voltage), which allows for a fined tuned power output and a more optimized charging cycle.
INOV has the added benefit of being able to dynamically adjust the charging voltage over the battery charging cycle. As a battery charges up, it slowly draws less and less current, which is partly why it takes longer to charge the last 20 percent than the first. Qualcomm states that its new technology allows the phone to request just enough voltage to reach the desired charge current, thereby maximising efficiency.
This is useful as it reduces the amount of energy wasted during charging. Previously, extra power not used to charge the battery would be lost as heat, warming up your phone and reducing the longevity of the battery. By exerting more control over charging efficiency, less power is wasted, resulting in less heat.
Read more about Quick Charge 3.0

Ruvy said:
POCO F1 supports Quick Charge 3.0 featuring INOV (Intelligent Negotiation for Optimum Voltage), which allows for a fined tuned power output and a more optimized charging cycle.
INOV has the added benefit of being able to dynamically adjust the charging voltage over the battery charging cycle. As a battery charges up, it slowly draws less and less current, which is partly why it takes longer to charge the last 20 percent than the first. Qualcomm states that its new technology allows the phone to request just enough voltage to reach the desired charge current, thereby maximising efficiency.
This is useful as it reduces the amount of energy wasted during charging. Previously, extra power not used to charge the battery would be lost as heat, warming up your phone and reducing the longevity of the battery. By exerting more control over charging efficiency, less power is wasted, resulting in less heat.
Read more about Quick Charge 3.0
Click to expand...
Click to collapse
Thanks. But Qualcomm doesn't say anything about the health of the battery.i have observed the phone during charge Cycles. It charges at higher voltage and slightly warm. But I'm concerned about the li-po battery longetivity. I would even switch to a 5v- 2Amp charger to increase the Life Span of my device as it takes around 30 - 40 minutes more which isn't a much difference as I have that much time to charge unless necessary...

poco f1 battery accu battery
bluei said:
Charging the poco fone using the bundled charger charges at around 4,300 mV. Is it healthy for the phone battery?? I use accubattery app and it shows this voltage in red colour, which makes me concerning about the longetivity of the battery life...
Click to expand...
Click to collapse
i used the accu battery and it shows the estimate capacity 91 percent in 30 session , can u share your stat pliz ,
its only been 4 month with poco f1 and the battery degrades so badly

bluei said:
Thanks. But Qualcomm doesn't say anything about the health of the battery.i have observed the phone during charge Cycles. It charges at higher voltage and slightly warm. But I'm concerned about the li-po battery longetivity. I would even switch to a 5v- 2Amp charger to increase the Life Span of my device as it takes around 30 - 40 minutes more which isn't a much difference as I have that much time to charge unless necessary...
Click to expand...
Click to collapse
Charging slowly the battery does not means that you are increasing lifespan of the battery. Charging slowly means high temperature for longer time = Less lifespan. I suggest to use a QC4+. It keeps temperature lower than every other charger. I'm using it since 3 months and temperature on charge is ~30-32 degrees on idle and ~36 while using it

Mrdream94 said:
Charging slowly the battery does not means that you are increasing lifespan of the battery. Charging slowly means high temperature for longer time = Less lifespan. I suggest to use a QC4+. It keeps temperature lower than every other charger. I'm using it since 3 months and temperature on charge is ~30-32 degrees on idle and ~36 while using it
Click to expand...
Click to collapse
but unfortunately QC4 is not available in india

Related

[Q] Charger parameters...?

Hi guys,
i want to ask - my phone charger has got these parameters -
input : 100-240VAC 50-60Hz 140mA
output : 5.0VDC 850mA
battery parameters :
BST-38
970mAh 3.6Wh
isn´t the charger too strong for the battery ?
charging my battery to 100% takes about an hour,sometimes less.
after charging the battery is quite hot.after 5-10 minutes the battery gets down to 80%, and it is stable from 80%.
i am charging just via USB now, because of i think that the charger is too strong and i think it can reduce battery life...?
what do you think ?
Yeah, it is strange.
The battery drains pretty fast after charging to 100% but later it is stable. Although I didn't notice that battery is hot, I think that charger charges battery too fast which is not good for battery IMO.
Mekki99 said:
Yeah, it is strange.
The battery drains pretty fast after charging to 100% but later it is stable. Although I didn't notice that battery is hot, I think that charger charges battery too fast which is not good for battery IMO.
Click to expand...
Click to collapse
No, its not charging too fast. Lipoly batteries have pretty tight specifications and the phone switches the voltage itself, for terms of compatibility a usb voltage is used (so less hardware is needed to step voltages from different sources). It also means you can charge from your pc without having a bypass cable like older model phones.
The mA output of the charger doesnt really matter. A high mA means the voltage will be more stable where as a low mA supply could cause undesirable voltage fluctuations.
A lipoly battery cannot be slow charged or trickle charged, the chemistry doesnt work that way. Slow charging could actually cause the battery to explode or in the very least make its performance poorer.
The battery appears to drain quickly in the first 10% but its an illusion caused by the software on the phone which measures the mAh drop. A lipoly battery may discharge from 1200mA to 1000mA in 10 mins and reach a plateau where is holds 900-1000mA for several hours. All that is required is to reset the battery stats so the phone can generate a new profile over several recharge cycles.
As I said, lipoly charge until near capacity and stop. They dont trickle charge, the charging circuit actually switches off. Those people who leave their phones plugged in 8 hours overnight do it no favours as it justs cycles the charger on and off, this could actually skew the battery stats giving a false reading in the first 10%.
The best thing is to charge until full and then remove from the charger, you can always charge it again in the morning before you go out to boost the %. For the best battery life you should maintain a charge above half as this keeps the chemistry from breaking down. Never ever let it go flat! When the phone registers 0% its not, its a safety mechanism and it will still have above half the rated mAh. Charge a dead lipoly and it will explode violently.
Using alternative charging methods of a lipoly is VERY dangerous. People have lost houses or even their lives by fiddling with them. They are not a forgiving as lion, nimh or nicad. With that said lipoly are cheap, reliable, have a small form factor and offer a high output in comparison.
The best device for charging the battery is the phone charger as it has the highest mA and most stable voltage. The PC comes second as most are only rated 500mA and can have voltage fluctuations in the range of 10% or more. Third... Nothing, there is no third - only flames and misery.
Sent from my U20i using Tapatalk

Battery life extender

I have developed a kernel patch that allows controlling the charge voltage of the battery. Lowering the charge voltage will typically increase battery cycle life by 2x for 0.1V and potentially much more at high temperatures. The default charge voltage is 4.3V, so with 4.2V you can expect 2x the battery life; with 4.1V 4x the battery life (the battery won't be fully charged).
The patch adds a new sysfs control: '/sys/devices/i2c-0/0-006a/float_voltage'. The setting is in milli-Volt; 3800mV - 4300mV is allowed. The charger supports 20mV increments.
For setting the charge voltage permanently, you can add something like:
echo 4100 > /sys/devices/i2c-0/0-006a/float_voltage
to an init script.
For my N7:
4.0V -> 73% charge
4.1V -> 83% charge
4.2V -> 93% charge
4.3V -> 100% charge
(The patch is against the stock kernel.)
The patch is included in the ElementalX kernel:
http://forum.xda-developers.com/showthread.php?t=2389022
and the Glitch kernel:
http://forum.xda-developers.com/showthread.php?t=2449919
anyone care to try first? is it any different than undervolting with custom kernel?
adichandra said:
anyone care to try first? is it any different than undervolting with custom kernel?
Click to expand...
Click to collapse
This is very different. It isn't supposed to increase battery runtime, it's supposed to decrease it.
It allows allows to not completely charge the battery. In return, the battery won't deteriorate as quickly. Making up numbers here: if the battery would normally survive 300 charge cycles (charged to 4.3V); if you only charge to 4.2V (or about 93% capacity), the battery would last for 600 charge cycles before it's dead.
ah i thought this tweak was about to give double battery life in one single charge. might be usef for others but not me though since i never use a gadget more than 18 months. thanks
adichandra said:
ah i thought this tweak was about to give double battery life in one single charge. might be usef for others but not me though since i never use a gadget more than 18 months. thanks
Click to expand...
Click to collapse
No it extends your battery life as in the longevity. The battery life that we usually think of is how long the battery will last on a charge like you were thinking. That's not what this mod is for. Such a mod that you were hoping for doesn't exist.
tiny4579 said:
No it extends your battery life as in the longevity. The battery life that we usually think of is how long the battery will last on a charge like you were thinking. That's not what this mod is for. Such a mod that you were hoping for doesn't exist.
Click to expand...
Click to collapse
Oh how they can wish though. Though still good work regardless, and very useful.
Anyone know the actual estimate for the amount of charge cycles the battery can handle before giving up the ghost?
I tend to agree with adichandra.. In today's consumer market, most gadjets are usually obsolete after 18 months..
Sent from my Nexus 7 using XDA Premium 4 mobile app
So charge cycles are extended by never allowing the battery to charge to 100%? Sounds similar to a feature on my thinkpad laptop that let's you set the charge and discharge thresholds.
Thank you for posting this!
OJ in Compton said:
So charge cycles are extended by never allowing the battery to charge to 100%? Sounds similar to a feature on my thinkpad laptop that let's you set the charge and discharge thresholds.
Click to expand...
Click to collapse
Yes. Same idea. Some Samsung laptops have this as well.
How can we apply this patch? Sorry for such a noob question...
marcus6999 said:
How can we apply this patch? Sorry for such a noob question...
Click to expand...
Click to collapse
If you are not building your own kernel, there will hopefully be a few kernels in this section that will include this.
If you are building your own kernel, you can take the posted 'smb345-charger.c' and replace 'drivers/power/smb345-charger.c' in your kernel tree. It's based on the stock kernel.
tni.andro said:
This is very different. It isn't supposed to increase battery runtime, it's supposed to decrease it.
It allows allows to not completely charge the battery. In return, the battery won't deteriorate as quickly. Making up numbers here: if the battery would normally survive 300 charge cycles (charged to 4.3V); if you only charge to 4.2V (or about 93% capacity), the battery would last for 600 charge cycles before it's dead.
Click to expand...
Click to collapse
Most kernels on all my phones have ability to set precisely the % you want battery charged up too. Haven't seen it for flo/razor
Sent from Pimped N7 (2013) XDA PREMIUM
Hmm that's a good suggestion. Truly to increase the battery charge cycle life by almost 2x you just have to charge it until 90%.
So basically you don't charge it to max voltage and you don't let the charger begin the high voltage stabilization.
So with normally (good Lithium batteries these days) 500 charge cycles you go for 1000 and so on.
I was searching for something like that, because it's a tablet that can last through many years.
I think it's a great feature and all kernels should implement and have it at stock. And let the user decide and choose voltage with an easy script if he wants it.
Battery life year extender
Thank you
tni.andro said:
If you are not building your own kernel, there will hopefully be a few kernels in this section that will include this.
If you are building your own kernel, you can take the posted 'smb345-charger.c' and replace 'drivers/power/smb345-charger.c' in your kernel tree. It's based on the stock kernel.
Click to expand...
Click to collapse
I'm going to add this in the next update to ElementalX
CTCaer said:
Hmm that's a good suggestion. Truly to increase the battery charge cycle life by almost 2x you just have to charge it until 90%.
So basically you don't charge it to max voltage and you don't let the charger begin the high voltage stabilization.
So with normally (good Lithium batteries these days) 500 charge cycles you go for 1000 and so on.
Click to expand...
Click to collapse
There is no good reason to use battery percentage to terminate the charge, instead of using a lower charger float voltage. Likely the only reason a percentage cutoff was used in other cases is that the charger chip didn't support setting the voltage.
The voltage setting is also much more predictable - the battery gauge can be quite unreliable in terms of charge estimate and easily jump 10% when it recalibrates itself.
Can anyone post the source of info for 2x battery cycle if only charge up to 4.2v? I read that not charging lithiums to full charge can help extended life but never seen anyone give estimates like 2x at 4.2v and 4x for 4.1v. Estimates seem a bit high to me. I agree with others here that this tablet can last a few years if the battery holds up so I was planning on replacing the battery after a year or two but if lowering the battery voltage really works this well then I will try it. There is a pretty big downside of having almost 10% less battery life all the time.
neotekz said:
Can anyone post the source of info for 2x battery cycle if only charge up to 4.2v?
Click to expand...
Click to collapse
http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries
http://macomp.ru/wp-content/uploads/2012/04/1607542.pdf
http://www.eetasia.com/STATIC/PDF/200806/EEOL_2008JUN16_POW_TA_01.pdf
tni.andro said:
There is no good reason to use battery percentage to terminate the charge, instead of using a lower charger float voltage.
Click to expand...
Click to collapse
Of course there is. The last 10% to 20% are causing the most aging of a lithium ion battery.
If you really want to prolonge the live of your battery charge it only up to 80%.
There is no real reason to limit the voltage as the stock hardware and drivers handles this already really good by adopting the charging voltage dynamically.
There's no reason to change charger's voltage. The only thing there's meaning in changing in the charger side is output current.
For example with the size of Nexus battery you can use a 1A one or 800mA. It will charge slow but you can maintain some more charge cycles.
Still the most important is to not let the battery reach it's maximum voltage (100%) and let the charger do it's voltage stabilization.
As also said from others before that's what takes the battery charge life away.
The best for good juice and year protection is 90%.
The best for year extension and low juice is 60%.
And of course, when you really need 100% juice (trip, flight, beach, whatever) you just charge it full and don't care for some cycles.
Good batteries have -+500 Full charge cycles. So almost one and a half year if you go from 100->0->100 everyday, before the capacity (mAh) of battery drops.
tni.andro said:
There is no good reason to use battery percentage to terminate the charge, instead of using a lower charger float voltage.
Click to expand...
Click to collapse
TDO said:
The last 10% to 20% are causing the most aging of a lithium ion battery.
Click to expand...
Click to collapse
That's correct.
If you really want to prolonge the live of your battery charge it only up to 80%.
Click to expand...
Click to collapse
That's exactly what lowering the charger float voltage can do. The original post has numbers for different voltages. E.g. with a 4.1V charger float voltage, the charger will stop charging at 83% charge.
There is no real reason to limit the voltage as the stock hardware and drivers handles this already really good by adopting the charging voltage dynamically.
Click to expand...
Click to collapse
The stock driver sets the charger float voltage to 4.3V. Given that there is current limiting (1200mA input current limit), the voltage will be lower initially, but the voltage regulation is 4.3V once the current is low enough.
Like I mentioned, using the battery percentage as cutoff isn't great, since the battery gauge can be pretty inaccurate (can be off by >10%). Setting the float voltage lower results in the same charge cuttoff every time, even if the battery gauge makes an inaccurate estimate.

Keeping good battery health?

Anybody have tips on the subject? I was reading around and read multiple articles on this. Many said do not keep it on the charger after it has reached 100%. This poses a problem, because the G2 will charge from 0-100 in nearly 1 hour and 30 minutes, and i like to keep it on the charger while i sleep. Does the G2 have software to prevent this? It does say to please remove charger to conserve energy when its full.
Any replies are much appreciated
Sent from my LG-D800 using xda app-developers app
Well i read also that you shouldnt charge it to 100% frequently
2. You shouldnt let the battery charge drop under 20 frequently Before recharging
3. You shouldnt let the battery run out of charge frequently because our battery will get damaged if u do that quite often
so beware of this point
And they said it's not best to let the phone charge over night frequently
Sent from my LG-D802 using XDA Premium 4 mobile app
I am no expert in this area - but this is what i do and i seem to get great battery life. i just looked, my device has been on battery for 3.5 hours and i'm still at 100% with usage in the following areas...
Google serviced - 29%
Android system - 22%
Screen - 17%
this is with wifi on, approx 5 min worth of voice calling, and several text messages, couple min of facebook and G+. i am not rooted, running stock launcher with most recent tmobile software update (unlocked and using it on Bell).
I hard reset my device once a month (minimum) - not sure if this does anything, but i am a little OCD when it come to my devices.
Before hard reset...
1. charge device to 100%
2. keep device plugged in for ~15 min after fully charged. The unplug.
3. hard reset device
4. once booted, plug device in a proceed to setup and install programs
5. unplug device once complete
During the day...
I always keep it charged up...i dont usually let it get below 75% (if possible). I'm always around a charger/plug at my work.
During the night...
1. charge device to 100% before going to bed
2. before you go to sleep, unplug device and put it in airplane mode
3. when you get up - turn off airplane mode and plug in for ~15 min or so
Again - im no expert, but this is working for me so imma stick to it!
It is not recommended to keep your phone plugged in after it has reached 100%. Only do it when you need an extra battery boost for the day (and that's hopefully not every day).
The general rule is to charge it from 40%-80% and that partial charges are better than full charges.
I really wish people would stop with the "don't keep it on the charger" nonsense which then makes people think they need to micromanage the charge cycle.
Charge early and often. Don't intentionally drain it down to some low percent, just charge nightly and you should be fine. If you're heavily using the phone, try to avoid dropping below 30%. Heavier discharges cause faster ageing.
And avoid keeping it in a hot environment, north of 30C. If it's your car GPS, keep a vent blowing cool air on it, especially in the summer. During the winter make sure a vent isn't blowing hot air on it.
Heat is probably the primary variable in battery life, followed by heavy discharge cycles.
Do whatever you want regarding keeping it charging after it's full. But disagreeing doesn't make your statement correct. I do agree with your statements about heat, however.
Sent from my LG-D802 using XDA Premium 4 mobile app
just charge the thing and use it, I have a Samsung Galaxy S2 2-3 years ago the battery still going strong, most of you dont even own a phone past a year.
I usually make my phone go as long as it can. My previous phone, an iPhone 4, lasted almost three years.
Sent from my LG-D802 using XDA Premium 4 mobile app
vPro97 said:
I usually make my phone go as long as it can. My previous phone, an iPhone 4, lasted almost three years.
Sent from my LG-D802 using XDA Premium 4 mobile app
Click to expand...
Click to collapse
the battery will last 3 years, its lithium battery, some people still own old phones like Iphone 4 and the battery still good.
battery is battery, just dont let it over heat and it'll be fine. stop trying to squeeze every second out of the battery and enjoy the phone...
I always thought it stopped charging at 100 but when it looses a little bit on the charger it charges it back. I thought that's why it said to conserve energy....as in energy from your house.
Sent from my VS980 4G using xda app-developers app
It's an established fact that keeping the phone at charged state between 40%-80% is most optimal (causes least stress) for the battery.
But of course, don't let that get in the way of your daily usage routine and cause you incovenience.
Battery is, afterall, consumable and is meant to be replaced.
I'm afraid there are lots of ill-informed people who insist that their batteries do not deteriorate. Congrats to them, they just find the solution that solves the global energy crisis.
How Often Should I Charge My Gadget's Battery to Prolong Its Lifespan?
http://lifehacker.com/5875162/how-often-should-i-charge-my-gadgets-battery-to-prolong-its-lifespan
If you like to get more technical, there's good information from the Pros.
http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries
Here's my notes from a few years ago.
--------------------------------------------------------
Li-Ion Battery
(From Wiki) During discharge, lithium ions Li+ carry the current from the negative to the positive electrode, through the non-aqueous electrolyte
and separator diaphragm.[7]
During charging, an external electrical power source (the charging circuit) applies a higher voltage (but of the same polarity) than that
produced by the battery, forcing the current to pass in the reverse direction. The lithium ions then migrate from the positive to the
negative electrode, where they become embedded in the porous electrode material in a process known as intercalation.
Prolonging battery pack life (from wiki)
+ Avoid deep discharge and instead charge more often between uses, the smaller the depth of discharge, the longer the battery will last.
+ Avoid storing the battery in full discharged state.
+ Li-ion batteries should be kept cool; they may be stored in a refrigerator.
+ The rate of degradation of Li-ion batteries is strongly temperature-dependent; they degrade much faster if stored or used at higher temperatures.
+ Li-ion has no memory effect.
+ Li-ion does not need to be fully charged.
+ In fact, it is better NOT to fully charge, because high voltages stresses the battery.
+ Li-ion cannot absorb overcharge, and when fully charged the charge current must be cut off =>
+ To minimize stress, keep the lithium-ion battery at the 4.20V/cell peak voltage as short a time as possible. (meaning do NOT overcharge)
+ Some portable devices sit in a charge cradle in the on position. The current drawn through the device is called the parasitic load and
can distort the charge cycle. Battery manufacturers advise against parasitic load because it induces mini-cycles.
What does that mean to us? Don't use when it's plugged in?
+ A portable device must be turned off during charge. This allows the battery to reach the set threshold voltage unhindered, and enables terminating charge on low current.
+ Li-ion should never be discharged too low.
+ Do not recharge lithium-ion if a cell has stayed at or below 1.5V for more than a week.
Simple Guidelines for Charging Lithium-based Batteries (from batteryuniversity.com)
+ A portable device should be turned off while charging. This allows the battery to reach
the threshold voltage unhindered and reflects the correct saturation current responsible to
terminate the charge. A parasitic load confuses the charger.
+ Charge at a moderate temperature. Do not charge below freezing.
+ Lithium-ion does not need to be fully charged; a partial charge is better.
+ Chargers use different methods for “ready” indication. The light signal may not always indicate a full charge.
+ Discontinue using charger and/or battery if the battery gets excessively warm.
+ Before prolonged storage, apply some charge to bring the pack to about half charge.
+ Over-discharged batteries can be “boosted” to life again. Discard pack if the voltage does not rise to a normal level within a minute while on boost.
Conclusion:
+ A portable device should be turned off while charging.
+ Avoid deep discharge and instead charge more often between uses.
+ Lithium-ion does not need to be fully charged; a partial charge is better.
G1_enthusiast said:
just charge the thing and use it, I have a Samsung Galaxy S2 2-3 years ago the battery still going strong, most of you dont even own a phone past a year.
Click to expand...
Click to collapse
I've had (and still have) the Samsung Galaxy S2 for over 2 years, and I had to replace the battery a little over half a year ago due to the dreaded battery bulge (I could spin my battery on the table). So yes, batteries do go bad and they can go bad in a short period of time. And yes, if this happens to the G2 with its non-removeable battery, that really sucks.
beezar said:
I've had (and still have) the Samsung Galaxy S2 for over 2 years, and I had to replace the battery a little over half a year ago due to the dreaded battery bulge (I could spin my battery on the table). So yes, batteries do go bad and they can go bad in a short period of time. And yes, if this happens to the G2 with its non-removeable battery, that really sucks.
Click to expand...
Click to collapse
did you leave it in 150 degrees heat?
I almost always turn off my phone if I know its gonna be 100+ outside and 150 in my car. its commonsense.
votinh said:
Here's my notes from a few years ago.
--------------------------------------------------------
Li-Ion Battery
(From Wiki) During discharge, lithium ions Li+ carry the current from the negative to the positive electrode, through the non-aqueous electrolyte
and separator diaphragm.[7]
During charging, an external electrical power source (the charging circuit) applies a higher voltage (but of the same polarity) than that
produced by the battery, forcing the current to pass in the reverse direction. The lithium ions then migrate from the positive to the
negative electrode, where they become embedded in the porous electrode material in a process known as intercalation.
Prolonging battery pack life (from wiki)
+ Avoid deep discharge and instead charge more often between uses, the smaller the depth of discharge, the longer the battery will last.
+ Avoid storing the battery in full discharged state.
+ Li-ion batteries should be kept cool; they may be stored in a refrigerator.
+ The rate of degradation of Li-ion batteries is strongly temperature-dependent; they degrade much faster if stored or used at higher temperatures.
+ Li-ion has no memory effect.
+ Li-ion does not need to be fully charged.
+ In fact, it is better NOT to fully charge, because high voltages stresses the battery.
+ Li-ion cannot absorb overcharge, and when fully charged the charge current must be cut off =>
+ To minimize stress, keep the lithium-ion battery at the 4.20V/cell peak voltage as short a time as possible. (meaning do NOT overcharge)
+ Some portable devices sit in a charge cradle in the on position. The current drawn through the device is called the parasitic load and
can distort the charge cycle. Battery manufacturers advise against parasitic load because it induces mini-cycles.
What does that mean to us? Don't use when it's plugged in?
+ A portable device must be turned off during charge. This allows the battery to reach the set threshold voltage unhindered, and enables terminating charge on low current.
+ Li-ion should never be discharged too low.
+ Do not recharge lithium-ion if a cell has stayed at or below 1.5V for more than a week.
Simple Guidelines for Charging Lithium-based Batteries (from batteryuniversity.com)
+ A portable device should be turned off while charging. This allows the battery to reach
the threshold voltage unhindered and reflects the correct saturation current responsible to
terminate the charge. A parasitic load confuses the charger.
+ Charge at a moderate temperature. Do not charge below freezing.
+ Lithium-ion does not need to be fully charged; a partial charge is better.
+ Chargers use different methods for “ready” indication. The light signal may not always indicate a full charge.
+ Discontinue using charger and/or battery if the battery gets excessively warm.
+ Before prolonged storage, apply some charge to bring the pack to about half charge.
+ Over-discharged batteries can be “boosted” to life again. Discard pack if the voltage does not rise to a normal level within a minute while on boost.
Conclusion:
+ A portable device should be turned off while charging.
+ Avoid deep discharge and instead charge more often between uses.
+ Lithium-ion does not need to be fully charged; a partial charge is better.
Click to expand...
Click to collapse
Just because it is on a wiki does not mean it is correct. Anyone that purports that current flows from negative to positive, is clearly not an engineer, and thus not a subject matter expert (I stopped reading right there so excuse if I'm repeating).
Heat, be it from charging, discharging, or environment, and over discharge, or improper charging are the primary reasons batteries lose capacity. Lithium polymer batteries will lose some of its initial capacity after a thousand or so charge-discharge cycles, but this is very much dependent on the charging rate used to charge the battery. If the charge rate is 0.5C or less, there is much less capacity loss (if any) over time. Charge rates of 1C and over, generate significant heat that deteriorates the cell chemistry over time, reducing capacity.
If I can ever kill my battery enough, I'll throw this phone on my charge profiler at work to see what charge rate it uses.
BTW, my two year old GSII is on its original battery and lasts all day with 40% left at the end of the day. I charge over night with no ill effects, but I never expose the phone to excessive heat.
T
Sent from my VS980 4G using Tapatalk 2
I slow charge my phone using a 500mA iPhone Cube brick and microUSB cable for overnight charging. Charging this way takes hours. I use quick charge in my car and office if needed.
A good charger should trickle charge once its 100% just to keep it up.
Sent from my VS980 4G using XDA Premium 4 mobile app
So our phones do not come with a good charger?
Sent from my VS980 4G using xda app-developers app
tedkunich said:
Just because it is on a wiki does not mean it is correct. Anyone that purports that current flows from negative to positive, is clearly not an engineer, and thus not a subject matter expert (I stopped reading right there so excuse if I'm repeating).
Heat, be it from charging, discharging, or environment, and over discharge, or improper charging are the primary reasons batteries lose capacity. Lithium polymer batteries will lose some of its initial capacity after a thousand or so charge-discharge cycles, but this is very much dependent on the charging rate used to charge the battery. If the charge rate is 0.5C or less, there is much less capacity loss (if any) over time. Charge rates of 1C and over, generate significant heat that deteriorates the cell chemistry over time, reducing capacity.
If I can ever kill my battery enough, I'll throw this phone on my charge profiler at work to see what charge rate it uses.
BTW, my two year old GSII is on its original battery and lasts all day with 40% left at the end of the day. I charge over night with no ill effects, but I never expose the phone to excessive heat.
T
Sent from my VS980 4G using Tapatalk 2
Click to expand...
Click to collapse
You quoted my post to say that info on Wiki and Battery University is wrong? and giving an example of charging your SGS2 overnite with no ill effects to prove them wrong?
votinh said:
You quoted my post to say that info on Wiki and Battery University is wrong? and giving an example of charging your SGS2 overnite with no ill effects to prove them wrong?
Click to expand...
Click to collapse
Like I said, I stopped reading the moment they stated the incorrect definition of current flow - if they got that basic tenant wrong, wasn't going to read further. Was not my intent to offend by quoting your post. My comment on the charging overnight was a general response to a prior post that leaving the device on the charger overnight was detrimental to the battery - probably should have quoted that post. In general, leaving an advanced device like a cellphone plugged into a charger will not overcharge a battery - a cheap toy will probably not have a proper charger and CAN damage a cell if left on for prolonged periods.
BTW, I'm an EE and design in Li-po batteries and chargers in my designs and I'm always dealing with non-technical marketing and sales folks to explain these types of details, so I tend to jump in when I hear wrong information (not saying the links contained false information) being discussed.
T
Sent from my Nexus 7 using Tapatalk 2
votinh said:
Here's my notes from a few years ago.
--------------------------------------------------------
Li-Ion Battery
(From Wiki) During discharge, lithium ions Li+ carry the current from the negative to the positive electrode, through the non-aqueous electrolyte
and separator diaphragm.[7]
During charging, an external electrical power source (the charging circuit) applies a higher voltage (but of the same polarity) than that
produced by the battery, forcing the current to pass in the reverse direction. The lithium ions then migrate from the positive to the
negative electrode, where they become embedded in the porous electrode material in a process known as intercalation.
Prolonging battery pack life (from wiki)
+ Avoid deep discharge and instead charge more often between uses, the smaller the depth of discharge, the longer the battery will last.
+ Avoid storing the battery in full discharged state.
+ Li-ion batteries should be kept cool; they may be stored in a refrigerator.
+ The rate of degradation of Li-ion batteries is strongly temperature-dependent; they degrade much faster if stored or used at higher temperatures.
+ Li-ion has no memory effect.
+ Li-ion does not need to be fully charged.
+ In fact, it is better NOT to fully charge, because high voltages stresses the battery.
+ Li-ion cannot absorb overcharge, and when fully charged the charge current must be cut off =>
+ To minimize stress, keep the lithium-ion battery at the 4.20V/cell peak voltage as short a time as possible. (meaning do NOT overcharge)
+ Some portable devices sit in a charge cradle in the on position. The current drawn through the device is called the parasitic load and
can distort the charge cycle. Battery manufacturers advise against parasitic load because it induces mini-cycles.
What does that mean to us? Don't use when it's plugged in?
+ A portable device must be turned off during charge. This allows the battery to reach the set threshold voltage unhindered, and enables terminating charge on low current.
+ Li-ion should never be discharged too low.
+ Do not recharge lithium-ion if a cell has stayed at or below 1.5V for more than a week.
Simple Guidelines for Charging Lithium-based Batteries (from batteryuniversity.com)
+ A portable device should be turned off while charging. This allows the battery to reach
the threshold voltage unhindered and reflects the correct saturation current responsible to
terminate the charge. A parasitic load confuses the charger.
+ Charge at a moderate temperature. Do not charge below freezing.
+ Lithium-ion does not need to be fully charged; a partial charge is better.
+ Chargers use different methods for “ready” indication. The light signal may not always indicate a full charge.
+ Discontinue using charger and/or battery if the battery gets excessively warm.
+ Before prolonged storage, apply some charge to bring the pack to about half charge.
+ Over-discharged batteries can be “boosted” to life again. Discard pack if the voltage does not rise to a normal level within a minute while on boost.
Conclusion:
+ A portable device should be turned off while charging.
+ Avoid deep discharge and instead charge more often between uses.
+ Lithium-ion does not need to be fully charged; a partial charge is better.
Click to expand...
Click to collapse
Does this wall of text pertain to lithium polymer as well? Consdering that is the type of battery in the phone not ion
Sent from my LG-VS980

[GUIDE]How to avoid battery degradation. Keep it as new for years.

I have been reading these days that some of you are starting to replace the battery of the Axon 7 after 1.5-2 years. This is something we all have experienced with phones, laptops, wireless devices, etc. About 2 years ago I researched on batteries and finally discovered how to avoid the degradation in Lithium-Ion batteries. I have applied it to my Dell XPS 13 Laptop and my Axon 7 with excellent results. Due to the recent proliferation of battery replacement I think this guide can be useful to extend the useful life of your battery.
Battery wear is something that can be reduced to almost nothing with proper charging habits. But there are some urban legends out there completely false. Lets review all them:
Do NEVER charge it over 90%: TRUE. The battery wears a lot when charging the last 10%. actually charging up to 90% takes about 10% of a degradation cycle while the last 10% takes 90% of the degradation cycle. Charging to 90%, only this trick, can reduce the wear of your battery to 1/10 or even more if you stop at 80%. I use to stop at 84%.
Do NEVER drain your battery completely: TRUE. The high current required to pull the energy stored in the battery when the level is so low requires more time per energy unit and that initial 10% wears the battery excessively. So taking care of that will save your battery too. I use to set low battery mode at 15% but I always avoid being so low. Please note that leaving the battery drained for too long can make it impossible to charge. IMPORTANT: If you are not going to use a device for some time, leave battery between 40-70%, not more, not less. If you do not do that, you can have an ugly surprise in case you need it again.
Quick Charge is bad for batteries: FALSE. It is actually the opposite. QC is a lot healthier since the battery is not heated for a long time. Heat is a problem too for the battery. So, try to avoid old charging units as possible and use only QC 3.0 chargers for car and home as much as possible.
Short charging sessions damage the battery: FALSE. A number of small charging sessions in the healthy region between 20-80% battery level is healthier than a long session for several reasons, the most important is that the battery temperature never rises that much.
I have been doing this in my devices and my Axon 7 retains the same energy storage as new after 18 months of healthy charging habits. These advises are also applicable to laptops and any other device using a Li-ion battery. As you can see, leaving your phone plugged at night will kill your battery very quickly the same way a laptop battery wears quickly when left plugged. I am lucky my Dell XPS 13 has a battery control software/firmware that allows charging to stop at a desired value automatically so I can have it plugged without actually charging. I was looking for a similar solution for the Axon 7 and I found it some time ago.
It was very annoying being on top of the device taking care of the battery level when charging. There are some apps out there that monitors the battery level while charging and signal an alarm when the desired maximum charge level is reached. But we are lucky!!!! The latest Custom Oreo Kernels for the Axon 7 support the charging_enable switch and we can use now Battery Charge Limit App to modify the max battery value. Two main values can be set, the max allowed charge and the recharge level. The first one is the most interesting since the charging will stop at that level. I have 84% set here but any value between 80%-90% is safe and healthy for your battery. The second value tells the system to avoid starting a charging session if the value is still above the second threshold. It is designed to avoid rapid charge/discharge sessions. Usually a value between 4-8% under the max value is safe and healthy. I have this second value set to 79%.
With this daemon your battery will never reach 100% and with it you will avoid excessive battery degradation. It worked for me so I hope you could benefit of it too. On the other side, just avoid drain your battery too much and do not fear short charging sessions during your car commuting time or while in the shower, etc... These little tricks sum and you will save the money and damages in your unit replacing a battery you probably could have avoided with proper battery care.
Cheers!!!!
Some are not false urban legends at all. On the contrary I see lots of false claims with no source evidence.
Limiting by percentage still allows the battery voltage to reach higher shorter lifespan voltage. See that limit apps thread for discussion on limiting by voltage through Tasker instead. Further do you know what voltage that percentage idles at? It varies by device implementation setup.
Here's some information on voltage level health.
"Additionally, when the cathode voltage rises past 4.2 V, the electrolyte begins to oxidize (and ultimately decompose). This effectively limits present-day lithium-ion batteries to a maximum voltage of 4.35 V with the understanding that the “bad stuff” begins to occur past 4.0 V, and becomes unsafe past 4.35 V."
https://qnovo.com/why-battery-vendors-are-hitting-the-wall
Got a reliable source for quick charge not harming battery life? I've only seen marketing material and such claims repeated but not any research or scientific sources.
Sent from my ZTE Axon 7 using XDA Labs
Infy_AsiX said:
Some are not false urban legends at all. On the contrary I see lots of false claims with no source evidence.
Limiting by percentage still allows the battery voltage to reach higher shorter lifespan voltage. See that limit apps thread for discussion on limiting by voltage through Tasker instead. Further do you know what voltage that percentage idles at? It varies by device implementation setup.
Here's some information on voltage level health.
"Additionally, when the cathode voltage rises past 4.2 V, the electrolyte begins to oxidize (and ultimately decompose). This effectively limits present-day lithium-ion batteries to a maximum voltage of 4.35 V with the understanding that the “bad stuff” begins to occur past 4.0 V, and becomes unsafe past 4.35 V."
https://qnovo.com/why-battery-vendors-are-hitting-the-wall
Got a reliable source for quick charge not harming battery life? I've only seen marketing material and such claims repeated but not any research or scientific sources.
Click to expand...
Click to collapse
Thanks for the info. However it is not easy to control the voltage of the cathode and the OP guide tries to use the available tools.
If you never fully charge how would you know if it's capacity is still near maximum?
I've kind of followed this idea for a while now ..
I always charge to a full 100% but never let the battery go completely flat ...
My Moto G is still running the same battery from new ...
My Axon 7 running Oreo is getting 4 days before it needs to be charged at normal usage..(recharge @ 15%) at the end of day 4
I get 6 days in standby
Oki said:
Quick Charge is bad for batteries: FALSE
Click to expand...
Click to collapse
I switched to old weaker chargers (0.5 - 1.0 amp) as there's almost no noticeable heat at all while charging, and I've found this extends the battery life as well. If any/all heat is bad, then aren't short bursts of high heat (3.0 amp QC) worse than long periods of little/no heat (0.5 - 1.0 amp) ?
Sure...
Most all of those "tips" are hogwash.
Modern day charging is handled by the phone. If there's something that hacked that algorithm in my phone, then so be it. :fingers-crossed:
Few years ago I did some research on Lithium-Ion batteries (which behave differently from other kind of batteries, such as lead acid ones for example) and I second all the conclusions by OP. If you are interested on the matter and to understand how batteries work, check this site: https://batteryuniversity.com/learn/ the explanations are crystal clear.
Disclaimer: I have no whatsoever association with the website.

Question Pixel 6 limit voltage on charging

Hi guys does anyone know how we can limit voltage when we charge ur phone?
What i use is rooted phone with ACC + AccA ront end but some bug you always have to check because most time AccA doesnt apply limit voltage as i ask.
Any better solution?
Why you need to limit the voltage? If you want to help battery to stay in good health for longer you should limit the charge current instead. Easiest way to do that is to use older charger with lower wattage. I usually charge my pixel 6 from my laptop which has type c ports with usb power delivery support and are limited to 12 watts so charge current never exceeds 2.1 ampers. I have also tested my old power bank and cable and there power is limited to even lower 7.5 watts or 1.5 ampers of current.
On battery university they said, the voltage from the charge is the problem not the amp speed, for example when your phone is at 3.8v(30%) and you charge with a quick charge 3amp at 4.05v(not 4.25v) you quickly recharge until 60%(4v) and you slowly and you reach 4.05v(+-70%) and you can let your phone charging longer you want the voltage never go over 4.05v and at 4.05v the said atfter 2000 recharge cycle you still have 90% of brand new battery capacity.
Your phone said full charge at 4.25v but with lithium ion it overcharging and that really dommage you battery life.
So in real is not the % of capacity because when you charge your phone to 80% diring the charge process the voltage use to charge is 4.35v and that is bad for the battery
BU-808: How to Prolong Lithium-based Batteries
BU meta description needed...
batteryuniversity.com
"Every 0.10V drop below 4.20V/cell doubles the cycle but holds less capacity. Raising the voltage above 4.20V/cell would shorten the life. The readings reflect regular Li-ion charging to 4.20V/cell."

Categories

Resources