GnssSatelliteBlackListHelper? - Android Q&A, Help & Troubleshooting

Can this be utilized in third party ROMS to disable all GNSS blacklists implemented by manufacturers? For instance Motorola locks out Galileo and Beidou in the USA even though the underlying Snapdragon 630 chipset is capable of both. Motorola is not the only manufacturer to implement GNSS lockouts. I'm trying to figure out if this is the mechanism utilized, or if the lockout is in the GPS chipset driver? If the mechanism could be discovered, and hacked, it may have far reaching effects across hundreds of devices, opening up existing hardware capabilities.
Implements GNSS satellite blacklist · aosp-mirror/[email protected]
Bug: 38269641 Test: m -j ROBOTEST_FILTER=GnssSatelliteBlacklistHelperTest RunFrameworksServicesRoboTests Test: atest SettingsBackupTest Test: Tested with adb on device Change-Id: Ifaa330bf74353ea...
github.com
Are any third party ROMs already disabling the GNSS lockouts? You can apparently query the string with adb, but many devices return empty strings. Any thoughts would be appreciated.

Related

[DEV] BMA150 Accelerometer Interface

Hello,
I would like to develop an application that makes use of the accelerometer sensor on an Android smartphone.
My app needs a measurement range of +-4g. I looked for accelerometer hardware specifications for various models and found that Nexus One mounts BMA150 by Bosch Sensortec, which supports three ranges (+-2g/+-4g/+-8g).
While browsing Android source code from Nexus One, looking for bma150 driver, I read this issue:
code.google.com/p/android/issues/detail?id=8143
I wish to modify the bma150 driver to set a default range of +-4g and then write a Java app to get and use data from the sensor. By the way, as far as I understand, the driver is actually not implemented at all. Or it is just not exported to the Java API? However, if it is not implemented at all, how can the OS change the screen orientation when the user rotates the device? And if it is not exported to the Java API, what would actually happen when an app tries to read data from the sensor?
Thank you for your help,
Nhexus
Using the accelerometer is pretty easy from the SDK, just google for "android accelerometer" you'll get loads of examples, like:
http://stuffthathappens.com/blog/2009/03/15/android-accelerometer/
Note the "onAccuracyChanged" method, I think the ranges/accuracy depend on the magnitude of the forces currently applied.
Hope that helps.
Thanks for the answer. I'd already had a look at the Sensor API in Android.
I was trying to understand a bit more about the driver that actually stands behind the Java API. I thought that the measurement range could be set via software (maybe via i2c communication with the device) and that it is not dynamically adapted.
However, I'm not an expert in the Android Open Source Project, so I don't clearly understand the source code structure and design. Maybe someone with an in-depth knowledge of HAL and drivers could give me some hints.
Thank you again for you help!

[READ BEFORE ASKING]CoMMON ANDROID TERMS, VERSIONS AND CAF*[FOR EVERYONE]

(*CAF - Custom Aftermarket Firmware.)
This thread is courtesy of Diablo67 in the Android General forum..obviously not many go there and read and then ask questions to which answers already exist..so please..new and old users..go through this ASAP
Apps2SD:A method of storing applications and cache on the device's microSD card.
ADB:Android Debug Bridge (adb) is a versatile command line tool that lets you communicate with an emulator instance or connected Android-powered device. It is a client-server program that includes three components:
•A client, which runs on your development machine. You can invoke a client from a shell by issuing an adb command. Other Android tools such as the ADT plugin and DDMS also create adb clients.
•A server, which runs as a background process on your development machine. The server manages communication between the client and the adb daemon running on an emulator or device.
•A daemon, which runs as a background process on each emulator or device instance.
Android:A Linux-based operating system for mobile devices such as HTC EVO.Versions are alphabetically codenamed after snacks: Donut, Eclair, Froyo, Gingerbread, Honeycomb, Ice Cream Sandwich, Jelly Donut.
AMOLED:Active Matrix Organic Light Emitting Diode. Basically, a very colorful, bright, display found in some smartphones.
APK:Android application package file. Each Android application is compiled and packaged in a single file that includes all of the application's code (.dex files), resources, assets, and manifest file. The application package file can have any name but must use the .apk extension. For example: myExampleAppname.apk. For convenience, an application package file is often referred to as an ".apk".
Alpha:The alpha phase of the release life cycle is the first phase to begin software testing (alpha is the first letter of the Greek alphabet, used as the number 1). In this phase, developers generally test the software using white box techniques. Additional validation is then performed using black box or gray box techniques, by another testing team. Moving to black box testing inside the organization is known as alpha release.[1]
Alpha software can be unstable and could cause crashes or data loss. The exception to this is when the alpha is available publicly (such as a pre-order bonus), in which developers normally push for stability so that their testers can test properly. External availability of alpha software is uncommon in proprietary software. However, open source software, in particular, often have publicly available alpha versions, often distributed as the raw source code of the software.
The alpha phase usually ends with a feature freeze, indicating that no more features will be added to the software. At this time, the software is said to be a feature complete.
Boot Animation:Boot animation is a term for a graphical representation of the boot process of the operating system.
Boot animation can be a simple visualisation of the scrolling boot messages in the console, but it can also present graphics or some combinations of both.
Unlike splash screens, boot screen or boot animation is not necessarily designed for marketing purposes, but can be to enhance the experience of the user as eye candy, or provide the user with messages (with an added advantage of color coding facility) to diagnose the state of the system.
Bootloader:This small program's only job is to load other data and programs which are then executed from RAM.Often, multiple-stage boot loaders are used, during which several programs of increasing complexity load one after the other in a process of chain loading.
Bootloop:When your system recycles over and over without entering the main OS.
Beta: is the software development phase following alpha. It generally begins when the software is feature complete. Software in the beta phase will generally have many more bugs in it than completed software, as well as speed/performance issues. The focus of beta testing is reducing impacts to users, often incorporating usability testing. The process of delivering a beta version to the users is called beta release and this is typically the first time that the software is available outside of the organization that developed it.
The users of a beta version are called beta testers. They are usually customers or prospective customers of the organization that develops the software, willing to test the software without charge, often receiving the final software free of charge or for a reduced price.
Beta version software is often useful for demonstrations and previews within an organization and to prospective customers. Some developers refer to this stage as a preview, prototype, technical preview (TP), or early access.
Some software is kept in perpetual beta—where new features and functionality is continually added to the software without establishing a firm "final" release.
CPU:It stands for Central Processing Unit and handles all the complex mathematical formulas necessary to do everyday things like surfing the Internet.
Custom:Independent developers who like to customize their devices beyond the standard options provided often tend to release the fruits of their labor for the rest to enjoy, in form of custom ROMs.
Cache:A component that transparently stores data so that future requests for that data can be served faster. The data that is stored within a cache might be values that have been computed earlier or duplicates of original values that are stored elsewhere. If requested data is contained in the cache (cache hit), this request can be served by simply reading the cache, which is comparatively faster. Otherwise (cache miss), the data has to be recomputed or fetched from its original storage location, which is comparatively slower. Hence, the greater the number of requests that can be served from the cache, the faster the overall system performance becomes.
CDMA:Mobile phone standards called cdmaOne, CDMA2000 (the 3G evolution of cdmaOne) and WCDMA (the 3G standard used by GSM carriers), which are often referred to as simply CDMA, and use CDMA as an underlying channel access method.
CIQ:Carrier IQ. A piece of preinstalled software that runs with elevated access in the background of portable devices by default and records everything. Potentially can be exploited to steal information.
Dual Core:A dual core processor is a central processing unit (CPU) that has two separate cores on the same die, each with its own cache. It essentially is two microprocessors in one. This type of CPU is widely available from many manufacturers. Other types of multi-core processors also have been developed, including quad-core processors with four cores each, hexa-core processors with six, octa-core processors with eight and many-core processors with an even larger number of cores.
Dalvik:The Android platform's virtual machine. The Dalvik VM is an interpreter-only virtual machine that executes files in the Dalvik Executable (.dex) format, a format that is optimized for efficient storage and memory-mappable execution.
Dalvik Cache:Writable cache that contains the optimized bytecode of all apk files (apps) on your Android device. Having the information in it's own cache makes applications load faster and perform better.
EXT2:The ext2 or second extended filesystem is a file system for the Linux kernel. It was initially designed by Rémy Card as a replacement for the extended file system (ext).
ext2 was the default filesystem in several Linux distributions, including Debian and Red Hat Linux, until supplanted more recently by ext3, which is almost completely compatible with ext2 and is a journaling file system. ext2 is still the filesystem of choice for flash-based storage media (such as SD cards, and USB flash drives) since its lack of a journal minimizes the number of writes and flash devices have only a limited number of write cycles. Recent kernels, however, support a journal-less mode of ext4, which would offer the same benefit along with a number of ext4-specific benefits.
EXT3:Third extended filesystem, is a journaled file system that is commonly used by the Linux kernel. It is the default file system for many popular Linux distributions, including Debian. Stephen Tweedie first revealed that he was working on extending ext2 in Journaling the Linux ext2fs Filesystem in a 1998 paper and later in a February 1999 kernel mailing list posting, and the filesystem was merged with the mainline Linux kernel in November 2001 from 2.4.15 onward.Its main advantage over ext2 is journaling, which improves reliability and eliminates the need to check the file system after an unclean shutdown. Its successor is ext4.
EXT4:It was born as a series of backward compatible extensions to ext3, many of them originally developed by Cluster File Systems for the Lustre file system between 2003 and 2006, meant to extend storage limits and add other performance improvements.However, other Linux kernel developers opposed accepting extensions to ext3 for stability reasons,and proposed to fork the source code of ext3, rename it as ext4, and do all the development there, without affecting the current ext3 users. This proposal was accepted, and on 28 June 2006, Theodore Ts'o, the ext3 maintainer, announced the new plan of development for ext4.
FC/FC's:Short for "force close," meaning an app that has crashed.
Fastboot:A diagnostic protocol used primarily to modify the flash filesystem in Android smartphones from another computer over a USB connection. It is part of the Android Debug Bridge library.
Utilizing the Fastboot protocol requires that the device be started in a boot loader or Second Program Loader mode in which only the most basic hardware initialization is performed. After enabling the protocol on the device itself it will accept any command sent to it over USB via a command line. Some of most commonly used fastboot commands include:
•flash - Overwrites a partition in flash with a binary image stored on the host computer.
•erase - Erases a partition in flash.
•reboot - Reboots the device into the either the main operating system or the system recovery partition.
•devices - Displays a list of all devices (with Serial #) connected to the host computer.
Flashing:The ROM memory used in smartphones and tablets etc. is often same as flash memory found in SD cards and USB flash drives, simply optimized for better speed and performance while running the operating system.
Hotspot:A spot that offers Internet access over a wireless local area network through the use of a router connected to a link to an Internet service provider. Hotspots typically use Wi-Fi technology.You can connect wifi campatible devices to it.
HDMI:High-Definition Multimedia Interface) is a compact audio/video interface for transmitting encrypted uncompressed digital data.It is a digital alternative to consumer analog standards, such as radio frequency (RF) coaxial cable, composite video, S-Video, SCART, component video, D-Terminal, or VGA (also called D-sub or DE-15F). HDMI connects digital audio/video sources (such as set-top boxes, DVD players, HD DVD players, Blu-ray Disc players, AVCHD camcorders, personal computers (PCs), video game consoles (such as the PlayStation 3 and Xbox 360), AV receivers, tablet computers, and mobile phones) to compatible digital audio devices, computer monitors, video projectors, and digital televisions.
Kang:Someone writes a code,someone else modifies the code to make their own release,its concidered a kang release.
Kernel:A kernel is a layer of code that allows the OS and applications to interface with your phone's hardware. The degree in which you can access your phone's hardware features depends on the quality of code in the kernel. The homebrew (rooting) community for HTC has made several kernel code improvements that give us additional features from our hardware that the stock kernel does not. When you flash a custom ROM, you automatically get a kernel. But you can also flash a standalone kernel ROM on top of the existing one, effectively overwriting it. These days, the difference in custom kernels is less about new features and more about alternate configurations. Choosing a custom kernel is basically choosing one that works best with your ROM.
Launcher:Collectively, the part of the Android user interface on home screens that lets you launch apps, make phone calls, etc. Is built in to Android, or can be purchased in the Android Market.
LCD Densityixel density is a measurement of the resolution of devices in various contexts; typically computer displays, image scanners, and digital camera image sensors.
First of all you need to understand that the Android User Interface uses something called a "display independent pixel" or a "dip" (yes, it's confusing because the density settings are in "dots per inch" or "dpi" which are considered the same as "ppi" or "pixels per inch" as well).
The default LCD Density setting on Android is 160 dpi. As far as the operating system is concerned 1 dip @ 160 dpi = 1 screen pixel. It doesn't mean that's actually true, but you've gotta start somewhere. In my opinion it would have been a lot nicer if they'd chosen 100 dpi because then it would be an easy percentage thing, but they didn't so we're stuck with this formula.
Mod:The act of modifying a piece of hardware or software or anything else for that matter, to perform a function not originally conceived or intended by the designer.
Nandroid:To backup the current running rom.
Nightly:A build that is performed at the end of each day of development. If you use a continuous integration server, it will generally be configured to build the code and run the unit tests on every check in. At the end of each day you may want to run more extensive tests, regression test and integration tests for example, which take too long to run on each check in and these would be triggered after the nightly build. If you have a full continuously delivery pipeline the nightly build may also be used to deploy the built code to environments for user testing.
Open GL:An open source 3D graphics library used in many devices, including Android devices.
Open & Closed Beta: Developers release either a closed beta or an open beta; closed beta versions are released to a select group of individuals for a user test and are invitation only, while open betas are from a larger group to the general public and anyone interested. The testers report any bugs that they find, and sometimes suggest additional features they think should be available in the final version.
Overclock:To increase the speed of your CPU.
Partition:The phone's internal memory (not the SD card) is solid-state (flash) memory, AKA NAND. It can be partitioned much like a normal hard drive can be partitioned. The bootloader exists in its own partition. Recovery is another partition; radio, system, cache, etc are all partitions.
Here are the standard partitions on an Android phone:
/misc - not sure what this is for.
/boot - bootloader, kernel
/recovery - holds the recovery program (either clockworkmod or RA recovery for a rooted Evo)
/system - operating system goes here: Android, Sense, boot animation, Sprint crapware, busybox, etc
/cache - cached data from OS usage
/data - user applications, data, settings, etc.
Recovery Mode:A small separate operating mode you can boot your device into, used for device administration. Two popular custom recovery modes are Amon Ra and Clockwork.
Rom/Firmware:Read-Only Memory and technically speaking, it refers to the internal storage of a device, which is supposed to contain the operating system instructions that needn’t be modified at all during the device’s normal operation.
Recovery Mode:A small separate operating mode you can boot your device into, used for device administration. Two popular custom recovery modes are Amon Ra and Clockwork.
Rom/Firmware:Read-Only Memory and technically speaking, it refers to the internal storage of a device, which is supposed to contain the operating system instructions that needn’t be modified at all during the device’s normal operation.
Ram: (Random Access Memory) A group of memory chips, typically of the dynamic RAM (DRAM) type, which function as the computer's primary workspace. When personal computers first came on the market in the late 1970s, 64KB (64 kilobytes) of RAM was the upper limit. Today, 64MB (64 megabytes) of SDRAM is entry level for a desktop computer, a thousand times as much (see SDRAM).
The "random" in RAM means that the contents of each byte of storage in the chip can be directly accessed without regard to the bytes before or after it. This is also true of other types of memory chips, including ROMs and PROMs. However, unlike ROMs and PROMs, RAM chips require power to maintain their content, which is why you must save your data onto disk before you turn the computer off. To learn about the types of RAM chips and how to upgrade your memory, see memory module. To learn how memory is used to process data, see computer or memory. See also dynamic RAM and static RAM.
Recovery:RecoverySystem contains methods for interacting with the Android recovery system (the separate partition that can be used to install system updates,wipe user data,etc).
Root:The first level of a folder.
Rooting:A process allowing users of mobile phones, tablet PCs, and other devices running the Android operating system to attain privileged control (known as "root access") within Android's subsystem. Rooting is often performed with the goal of overcoming limitations that carriers and hardware manufacturers put on some devices, resulting in the ability to alter or replace system applications and settings, run specialized apps that require administrator-level permissions, or perform other operations that are otherwise inaccessible to a normal Android user. Rooting is analogous to jailbreaking devices running the Apple iOS operating system or the Sony PlayStation 3. On Android, rooting can also facilitate the complete removal and replacement of the device's operating system.
SBC: (the ability to charge your battery beyond the default safe limit). The concept is similar to overclocking a processor: you're overriding the safety limits established to achieve additional performance. The benefit here is that you may gain more use of your battery per charge. The drawback is that you can damage the battery and significantly reduce its longevity. Some kernels claim they are using a safe technique to prevent battery damage. Just be aware of the potential risks.
Sideloading:It means installing applications without using the official Android Market.
Splash Screen:A splash screen is an image that appears while android is loading.Splash screens cover the entire screen or simply a rectangle near the center of the screen. The splash screens of operating systems and some applications that expect to be run full-screen usually cover the entire screen.
Superuser/SU:On many computer operating systems, the superuser is a special user account used for system administration. Depending on the operating system, the actual name of this account might be: root, administrator or supervisor.
Normal work on such a system is done using ordinary user accounts, and because these do not have the ability to make system-wide changes any viruses and other malware - or simple user errors - do not have the ability to adversly affect a whole system. In organizations, administrative privileges are often reserved for authorized experienced individuals.
Script:The Scripting Layer for Android (abridged as SL4A, and previously named Android Scripting Environment or ASE) is a library that allows the creation and running of scripts written in various scripting languages directly on Android devices. SL4A is designed for developers and is still alpha quality software.
These scripts have access to many of the APIs available to normal Java Android applications, but with a simplified interface. Scripts can be run interactively in a terminal, in the background, or via Locale.
SDK: (SDK or "devkit") is typically a set of software development tools that allows for the creation of applications for a certain software package, software framework, hardware platform, computer system, video game console, operating system, or similar platform.
Stock:This is the operating system in its default form, without any modifications made to it except for any device-specific support required to run it on the particular device.
Tethering:Means sharing the Internet connection of an Internet-capable mobile phone with other devices. This sharing can be offered over a wireless LAN (Wi-Fi), Bluetooth, or by physical connection using a cable. In the case of tethering over wireless LAN, the feature may be branded as a mobile hotspot.The Internet-connected mobile phone acts as a portable router when providing tethering services to others.
Underclock:To reduce the speed of your CPU.
Undervolt:Undervolting means taking some of the voltage from the CPU which in return gives a longer battery life and lower temperature during intensive use of the CPU.
USB:Stands for Universal Serial Bus. Is a method of connecting devices to a computer. Most smartphones now use microUSB cables to charge and sync.
Updater Script:When Android devices install updates via 'update.zip' files using recovery mode they have to perform a wide range of functions on files and permissions. Instead of using a minimal shell such as {b,d,c}sh the Android designers decided to create a small functional language that can be extended by device manufacturers if necessary. Since the Android "Donut" release (v1.6) the scripting language is called Edify and is defined primarily in the bootable/recovery/{edify,edifyscripting,updater} directories of the Android source-code tree.
Click to expand...
Click to collapse
Nice work
BELOW IS THE DETAILED LIST OF ALL ANDROID VERSIONS AND DETAILS.
1.0:Android 1.0, the first commercial version of the software, was released on 23 September 2008.The first Android device, the HTC Dream (G1), incorporated the following Android 1.0 features:
•Android Market application download and updates through the Market app
•Web browser to show, zoom and pan full HTML and XHTML web pages – multiple pages show as windows ("cards")
•Camera support – however this version lacked the option to change the camera's resolution, white balance, quality, etc.
•Folders allowing the grouping of a number of app icons into a single folder icon on the Home screen.
•Access to web email servers, supporting POP3, IMAP4, and SMTP.
•Gmail synchronization with the Gmail app
•Google Contacts synchronization with the People app
•Google Calendar synchronization with the Calendar app
•Google Maps with Latitude and Street View to view maps and satellite imagery, as well as find local business and obtain driving directions using GPS
•Google Sync, allowing management of over-the-air synchronization of Gmail, People, and Calendar
•Google Search, allowing users to search the Internet and phone apps, contacts, calendar, etc
•Google Talk instant messaging
•Instant messaging, text messaging, and MMS
•Media Player, enabling management, importing, and playback of media files – however, this version lacked video and stereo Bluetooth support
•Notifications appear in the Status bar, with options to set ringtone, LED or vibration alerts
•Voice Dialer allows dialing and placing of phone calls without typing a name or number
•Wallpaper allows the user to set the background image or photo behind the Home screen icons and widgets
•YouTube video player
•Other apps include: Alarm Clock, Calculator, Dialer (Phone), Home screen (launcher), Pictures (Gallery), and Settings.
•Wi-Fi and Bluetooth support
1.1:On 9 February 2009, the Android 1.1 update was released, initially for the T-Mobile G1 only. The update resolved bugs, changed the API and added a number of other features:
•Details and reviews available when a user searches for businesses on Maps
•Longer in-call screen timeout default when using the speakerphone, plus ability to show/hide dialpad
•Ability to save attachments in messages
•Support added for marquee in system layouts
Click to expand...
Click to collapse
FrOM HERE ON, GOOGLE DECIDED TO NAME THEIR VERSIONS IN ALPHABETICAL ORDER, STARTING WITH C, AS 2 VERSIONS HAD ALREADY BEEN RELEASED.
Cupcake:On 30 April 2009, the Android 1.5 update, dubbed Cupcake, was released, based on Linux kernel 2.6.27.The update included several new features and UI amendments:
•Support for third-party virtual keyboards with text prediction and user dictionary for custom words
•Support for Widgets - miniature application views that can be embedded in other applications (such as the Home screen) and receive periodic updates
•Video recording and playback in MPEG-4 and 3GP formats
•Auto-pairing and stereo support for Bluetooth added (A2DP and AVRCP profiles)
•Copy and paste features added to web browser
•User pictures shown for Favorites in Contacts
•Specific date/time stamp shown for events in call log, and one-touch access to a contact card from call log event
•Animated screen transitions
•Ability to upload videos to YouTube
•Ability to upload photos to Picasa
Donut:On 15 September 2009, the Android 1.6 SDK – dubbed Donut – was released, based on Linux kernel 2.6.29.Included in the update were numerous new features:
•Voice and text entry search enhanced to include bookmark history, contacts, and the web
•Ability for developers to include their content in search results
•Multi-lingual speech synthesis engine to allow any Android application to "speak" a string of text
•Easier searching and ability to view app screenshots in Android Market
•Gallery, camera and camcorder more fully integrated, with faster camera access
•Ability for users to select multiple photos for deletion
•Updated technology support for CDMA/EVDO, 802.1x, VPNs, and a text-to-speech engine
•Support for WVGA screen resolutions
•Speed improvements in searching and camera applications
•Expanded Gesture framework and new GestureBuilder development tool
Eclair:On 26 October 2009, the Android 2.0 SDK – codenamed Eclair – was released, based on Linux kernel 2.6.29.Changes included:
•Expanded Account sync, allowing users to add multiple accounts to a device for email- and contact-synchronization
•Exchange email support, with combined inbox to browse email from multiple accounts in one page
•Bluetooth 2.1 support
•Ability to tap a Contacts photo and select to call, SMS, or email the person
•Ability to search all saved SMS and MMS messages, with delete oldest messages in a conversation automatically deleted when a defined limit is reached
•Numerous new camera features, including flash support, digital zoom, scene mode, white balance, color effect and macro focus
•Improved typing speed on virtual keyboard, with smarter dictionary that learns from word usage and includes contact names as suggestions
•Refreshed browser UI with bookmark thumbnails, double-tap zoom and support for HTML5
•Calendar agenda view enhanced, showing attending status for each invitee, and ability to invite new guests to events
•Optimized hardware speed and revamped UI
•Support for more screen sizes and resolutions, with better contrast ratio
•Improved Google Maps 3.1.2
•MotionEvent class enhanced to track multi-touch events
•Addition of live wallpapers, allowing the animation of home-screen background images to show movement
2.0.1:The Android 2.0.1 SDK was released on 3 December 2009.It was a minor platform release deployable to Android-powered handsets, including minor API changes, bug fixes and framework behavioral changes
2.1:The 2.1 SDK was released on 12 January 2010.It was a minor platform release deployable to Android-powered handsets, including minor amendments to the API and bug fixes.
Froyo:On 20 May 2010, the Android 2.2 (Froyo) SDK was released, based on Linux kernel 2.6.32.Its features included:
•Speed, memory, and performance optimizations
•Additional application speed improvements, implemented through JIT compilation
•Integration of Chrome's V8 JavaScript engine into the Browser application
•Support for the Android Cloud to Device Messaging (C2DM) service, enabling push notifications
•Improved Microsoft Exchange support, including security policies, auto-discovery, GAL look-up, calendar synchronization and remote wipe
•Improved application launcher with shortcuts to Phone and Browser applications
•USB tethering and Wi-Fi hotspot functionality
•Added an option to disable data access over mobile network
•Updated Market application with batch and automatic update features
•Quick switching between multiple keyboard languages and their dictionaries
•Voice dialing and contact sharing over Bluetooth
•Support for Bluetooth-enabled car and desk docks
•Support for numeric and alphanumeric passwords
•Support for file upload fields in the Browser application
•Support for installing applications to the expandable memory
•Adobe Flash support
•Support for extra-high-PPI screens (320 ppi), such as 4" 720p
•Gallery allows users to view picture stacks using a zoom gesture
2.2.1:The Android 2.2.1 update was released on 18 January 2011, and included a number of bug fixes, security updates, and performance improvements.
2.2.2:The Android 2.2.2 update was released on 22 January 2011, and fixed minor bugs, including SMS routing issues that affected the Nexus One.
2.2.3:The Android 2.2.3 update was released on 21 November 2011, and consisted of two security patches.
Gingerbread:On 6 December 2010, the Android 2.3 (Gingerbread) SDK was released, based on Linux kernel 2.6.35.Changes included:
•Updated user interface design with increased simplicity and speed
•Support for extra-large screen sizes and resolutions (WXGA and higher)
•Native support for SIP VoIP internet telephony
•Faster, more intuitive text input in virtual keyboard, with improved accuracy,better suggested text and voice input mode
•Enhanced copy/paste functionality, allowing users to select a word by press-hold, copy, and paste
•Support for Near Field Communication (NFC), allowing the user to read an NFC tag embedded in a poster, sticker, or advertisement
•New audio effects such as reverb, equalization, headphone virtualization, and bass boost
•New Download Manager, giving users easy access to any file downloaded from the browser, email, or another application
•Support for multiple cameras on the device, including a front-facing camera, if available
•Support for WebM/VP8 video playback, and AAC audio encoding
•Improved power management with a more active role in managing apps that are keeping the device awake for too long
•Enhanced support for native code development
•Switched from YAFFS to ext4 on newer devices
•Audio, graphical, and input enhancements for game developers
•Concurrent garbage collection for increased performance
•Native support for more sensors (such as gyroscopes and barometers)
2.2.3:Released on 9 February 2011, Android 2.3.3 included several improvements and API fixes
2.3.4:Version 2.3.4 introduced support for voice or video chat using Google Talk.
2.3.5:Released on 25 July 2011, Android 2.3.5 included a number of system enhancements:
•Improved network performance for the Nexus S 4G, among other fixes and improvements
•Fixed Bluetooth bug on Samsung Galaxy S
•Improved Gmail application
•Shadow animations for list scrolling
•Camera software enhancements
•Improved battery efficiency
2.3.6:Released on 2 September 2011, this version fixed a voice search bug. The 2.3.6 update had the side-effect of impairing the Wi-Fi hotspot functionality of many Canadian Nexus S phones. Google acknowledged this problem and fixed it in late September.
2.3.7:Android 2.3.7 introduced Google Wallet support for the Nexus S 4G.
Honeycomb:On 22 February 2011, the Android 3.0 (Honeycomb) SDK – the first tablet-only Android update – was released, based on Linux kernel 2.6.36.The first device featuring this version, the Motorola Xoom tablet, was released on 24 February 2011.Changes included:
•Optimized tablet support with a new virtual and “holographic” user interface
•Added System Bar, featuring quick access to notifications, status, and soft navigation buttons, available at the bottom of the screen
•Added Action Bar, giving access to contextual options, navigation, widgets, or other types of content at the top of the screen
•Simplified multitasking – tapping Recent Apps in the System Bar allows users to see snapshots of the tasks underway and quickly jump from one app to another
•Redesigned keyboard, making typing fast, efficient and accurate on larger screen sizes
•Simplified, more intuitive copy/paste interface
•Multiple browser tabs replacing browser windows, plus form auto-fill and a new “incognito” mode allowing anonymous browsing
•Quick access to camera exposure, focus, flash, zoom, front-facing camera, time-lapse, and more
•Ability to view albums and other collections in full-screen mode in Gallery, with easy access to thumbnails for other photos
•New two-pane Contacts UI and Fast Scroll to let users easily organize and locate contacts
•New two-pane Email UI to make viewing and organizing messages more efficient, allowing users to select one or more messages
•Support for video chat using Google Talk
•Hardware acceleration
•Support for multi-core processors
•Ability to encrypt all user data
3.1:The 3.1 SDK was released on 10 May 2011.Changes included:
•UI refinements
•Connectivity for USB accessories
•Expanded Recent Apps list
•Resizable Home screen widgets
•Support for external keyboards and pointing devices
•Support for joysticks and gamepads
•Support for FLAC audio playback
•High-performance Wi-Fi lock, maintaining high-performance Wi-Fi connections when device screen is off
•Support for HTTP proxy for each connected Wi-Fi access point
3.2:The 3.2 SDK was released on 15 July 2011,first appearing on Huawei's MediaPad tablet.Changes included:
•Improved hardware support, including optimizations for a wider range of tablets
•Increased ability of apps to access files on the SD card, e.g. for synchronization
•Compatibility display mode for apps that have not been optimized for tablet screen resolutions
•New display support functions, giving developers more control over display appearance on different Android devices
3.2.1:The Android 3.2.1 update was released on 20 September 2011, and included a number of amendments:
•Bug fixes and minor security, stability and Wi-Fi improvements
•Update to Android Market with automatic updates and easier-to-read Terms and Condition text
•Update to Google Books
•Improved Adobe Flash support in browser
•Improved Chinese handwriting prediction
3.2.2:The 3.2.2 update was released on 30 August 2011, and included bug fixes and other minor improvements for the Motorola Xoom 4G.
Ice Cream Sandwhich:Android 4.0 – codenamed Ice Cream Sandwich, and based on Linux kernel 3.0.1– was previewed at the May 2011 Google I/O event,and officially launched at the Galaxy Nexus and Ice Cream Sandwich release event on 19 October 2011.
•Enhanced speed and performance
•Virtual buttons in the UI, in place of capacitive or physical buttons
•Separation of widgets in a new tab, listed in a similar manner to apps
•Easier-to-create folders, with a drag-and-drop style
•A customizable launcher
•Improved visual voicemail with the ability to speed up or slow down voicemail messages
•Pinch-to-zoom functionality in the calendar
•Offline search, a two-line preview, and new action bar at the bottom of the Gmail app
•Ability to swipe left or right to switch between Gmail conversations
•Integrated screenshot capture (accomplished by holding down the Power and Volume-Down buttons)
•Improved error correction on the keyboard
•Ability to access apps directly from lock screen (similar to HTC Sense 3.x)
•Improved copy and paste functionality
•Better voice integration and continuous, real-time speech to text dictation
•Face Unlock, a feature that allows users to unlock handsets using facial recognition software
•New tabbed web browser, allowing up to 16 tabs
•Automatic syncing of browser with users' Chrome bookmarks
•A new typeface family for the UI, Roboto
•Data Usage section in settings that lets users set warnings when they approach a certain usage limit, and disable data use when the limit is exceeded
•Ability to shut down apps that are using data in the background
•Improved camera app with zero shutter lag, time lapse settings, panorama mode, and the ability to zoom while recording
•Built-in photo editor
•New gallery layout, organized by location and person
•Refreshed "People" app with social network integration, status updates and hi-res images
•Android Beam, a near-field communication feature allowing the rapid short-range exchange of web bookmarks, contact info, directions, YouTube videos and other data
•Hardware acceleration of the UI
•Resizeable widgets – already part of Android 3.1 for tablets, but new for cellphones
•Wi-Fi Direct
•1080p video recording for stock Android devices
4.0.2:The Android 4.0.2 update was released on 28 November 2011,and fixed minor bugs on the Verizon Galaxy Nexus,the US launch of which was later delayed until December 2011.
4.0.3:The Android 4.0.3 update was first released on 16 December 2011.It included a number of bug fixes and optimizations, and offered improvements to graphics, databases, spell-checking and Bluetooth functionality,along with new APIs for developers,including a social stream API in the Contacts provider. Other features included Calendar provider enhancements, new camera apps enhancing video stabilization and QVGA resolution, and accessibility refinements such as improved content access for screen readers.
Jelly Bean:The report also mentions some interesting features that originally planned in the presence of ice Cream Sandwich is likely to be postponed and will be displayed on the jelly bean.
Reportedly,this is because these features are not ready until it came time to release the ice cream sandwiches.Google itself has not confirmed anything regarding this information.
Click to expand...
Click to collapse
Different Custom After Market Firmwares.
BeLOW ARE THE DIFFERENT CUSTOM AFTER MARKET FIRMWARES.
MIUI
(pronounced "Me You I", a play on the common abbreviation of the words user interface as UI),developed by Xiaomi Tech, is an aftermarket firmware for cell phones based on the open-source Android operating system. It features a heavily-modified user interface that does away with the Android app drawer and has drawn comparisons with Apple's iOS.It includes additional functionality not found in stock Android, including toggles on the notification pull-down, new music, gallery, and camera apps, and an altered phone dialer that displays matching contacts as a user enters a number.
MIUI is based on Android 2.3.7 and CyanogenMod 7.1 sources, and was initially developed in the Chinese language by Chinese startup Xiaomi.Xiaomi added a number of apps to enhance the basic framework; those include MITalk (a Blackberry Messenger clone),MINotes,MIBackup,MIMusic,and MIGallery.MIUI is made up of two parts, MI and UI, where UI stands for User Interface and MI, as stated by Xiaomi CEO Lei Jun, stands for Mobile Internet and Mission Impossible.
The modified operating system has been criticized for being similar to iOS.Due to the fact that MIUI is developed in China, some features that are not relevant to the Chinese market, such as WiMax support, are unavailable on MIUI, and without access to the source code, it is not possible for 3rd parties to easily add this support.
AOSP
The Android Open Source Project (AOSP) is led by Google, and is tasked with the maintenance and development of Android.According to the project "The goal of the Android Open Source Project is to create a successful real-world product that improves the mobile experience for end users."AOSP also maintains the Android Compatibility Program, defining an "Android compatible" device "as one that can run any application written by third-party developers using the Android SDK and NDK", to prevent incompatible Android implementations.The compatibility program is also optional and free of charge, with the Compatibility Test Suite also free and open-source.
CYANOGENMOD
CyanogenMod is an open source replacement firmware based on the Android mobile operating system for smart phones and tablet computers. It offers features and options not found in the official firmware distributed by vendors of these devices.
Features supported by CyanogenMod include native theming support (also called the "T-Mobile Theme Engine"), Free Lossless Audio Codec (FLAC) support, a large Access Point Name list, an OpenVPN client, a reboot menu, support for Wi-Fi, Bluetooth, and USB tethering, CPU overclocking and performance enhancements, soft buttons and other "tablet tweaks", toggles in the notification pull-down (such as Wi-Fi, Bluetooth and GPS), app permissions management, as well as other interface enhancements. CyanogenMod is also stated to increase performance and reliability compared with official firmware releases.
CyanogenMod is developed as free and open source software based on the official releases of Android by Google, with added original and third-party code.
Click to expand...
Click to collapse
Thank You. Now I know what CAF means.
Android_Sheriff said:
Thank You. Now I know what CAF means.
Click to expand...
Click to collapse
code aurora forum
http://forum.xda-developers.com/sitesearch.php?q=code aurora forum
Thanks!
Now, I know what is "kanging" means, this thread is very useful...

[Q] Context Simulation: Decision Help

Hello together,
I`m writing currently my master thesis with the topic "Context Simulator For Mobile Business Application". The goal is, to test how an Android application reacts during changing context conditions: How reacts an application, if the battery is almost empty? How reacts an application, if internet connection breaks down during data transmission? How reacts an application, if a SD-Card is available/not available? ...
I want to simulate all of these factors on the PC and send the data to my android device. Some more examples:
- Simulating sensor data for accelerometer, gyroscope, ...
- GPS
- Camera and microphone (if an application requests a camera image, it should receive a image from my simulator)
- Fake connection for Wi-Fi, HDSPA, EDGE
- Fake time, time zone and date
- Simulate a specific battery level
- Fake calendar entries
------------------ My approaches ------------------
No 1:
Extend an existing custom rom with my features => Some calls should not transfer to OS (example: GPS) but to my simulator on PC. Also send data (example: battery level) to android OS. For example to pretend a low battery level.
No 2:
Write my own sandbox application (I haven`t found information to this topic so far). In this sandbox application, I`m going to start my application to test. So it is possible, to fetch all request from this System under test and I can decide if I want to transfer them to Android OS or to my simulator.
No 3:
Develop my own library, which will be included from my system under test. This library extends some android classes (e.g. Activity, Location Manager, Sensor Manager). My extensions classes will transmit the request to my simulator instead to the OS.
I`m afraid, I only have limited functionalities when I`m using this approach.
No 4:
Take sensor simulator from open intents as basic and extend it as good as possible.
-------- About Me --------
I only have few experience in Android development, but a lot experience in Java development. I know, I should read now a lot about custom roms, ... Unfortunately this thesis should be finish at the end of march.
------- What I want from you -------
Advice. I hope you understand my problem. Which is the best way to realize this project? I would like to have as much functionalities as possible. My prototype doesn`t need to support all context factors, but I should consider all factors in my system design.
I wanted to attached two graphics, but unfortunately I`m not allowed to. These are two possibilities and I`m not sure, which one is better (and also, if they are possible):
http ://s7.directupload.net/images/131212/bnpuo8gh.png
http ://s7.directupload.net/images/131212/e7u8dv4r.png
Thanks a lot,
Michael

HiChain1.0 Distributed Trusted Device Connection

In an era of the Internet of Things, our lives have been made more convenient by continuously optimized apps across distributed scenarios in contexts such as the smart home, smart office, and smart travel. Redefined product forms and enhanced cross-device collaboration have also contributed significantly to getting rid of limitations in terms of device connection. In light of this, highly reliable and accurate trusted connections between smart devices become crucial not only for improving the smart life experience, but also for protecting consumers' privacy and security of consumers' property.
Born for a converged intelligent life experience
The key factors for optimizing the smart life experience are improving the utilization rate of smart devices, removing the restrictions on device usage scenarios, and leveraging multiple types of devices. Born to address these issues, HiChain 1.0 for distributed and trusted device connections builds a software system across multiple devices to comprehensively enable trusted connections of devices using distributed technology, facilitating secure, convenient, and efficient device interconnections.
12 core functions enabling trusted connections in distributed scenarios
HiChain 1.0 securely connects core devices (such as mobile phones, tablets, and PCs), hub devices (such as tablets, TVs, and speakers), and accessories (such as watches and headsets), and performs binding, authorization, and transmission/control operations. In addition, HiChain 1.0 improves the establishment and transmission of the trust relationship, as well as data transmission and control based on the trust relationship. With the 12 core functions of HiChain 1.0 in distributed scenarios, trusted connections between the same account, across accounts, and independent of accounts become a reality, and various intelligent devices can collaborate with each other to assist people in daily life and work situations.
Remove cross-device limitations and build an interconnected life
In today's modern world where smart device forms including smart speakers, watches, TVs, and even vehicles have sprung up, consumers' demands on cross-device and multi-screen collaboration have also been soaring. HiChain 1.0 utilizes its proprietary technologies to unblock connection channels to allow different smart devices to interconnect with each other, as well as integrate device advantages for an optimized cross-device collaboration experience, forming a "1+1 > 2" synergy effect across a wide range of scenarios such as travel, mobile office, and social communication.
Intelligent travel: making journey smarter
The mission of vehicles has evolved from "making travel easier" to "making travel smarter". Closely related to this development is HiChain 1.0's enabling of secure binding between mobile phones and vehicles, end-to-end two-way authentication, and encrypted transmission to prevent attacks. This means that user privacy will not be disclosed even if data is intercepted. In this way, a seamless HiCar service scenario is implemented whereby users can project their phone screen to the vehicle screen, and seamlessly control phone apps (such as navigation, music, phone, and SMS apps) projected to the vehicle screen.
Smart office: making work more efficient
Good tools are crucial to a job being done properly. As such, HiChain 1.0 leverages its technical advantages to deliver an optimally secure screen projection and control experience by allowing mobile phones to obtain the unique identifier of a PC through scanning the QR code or using NFC to tap against the PC, and then project the screen to the PC desktop. This is especially handy for working at home efficiently and working together with colleagues.
One-tap TV projection: making connections more flexible
HiChain 1.0 also utilizes protocols such as Miracast to establish a connection between the phone and the TV (using the Miracast security mechanism), obtain the TV's unique identifier through the Miracast channel, and project video and audio from the phone to the TV and speaker. It can also return the video data collected by the TV's camera to the phone, facilitating a seamless and immersive entertainment experience between phones and TVs.
HiChain 1.0 will continue to give full play to its technical characteristics to enable trusted connections between devices using distributed technologies. Various types of smart devices will be able to collaborate with each other in a secure and trusted manner to overcome restrictions across different usage scenarios, and provide assurance for consumers to achieve a seamless and intelligent life experience with multi-screen collaboration.

Why does BLE scanning reuquire ACCESS_FINE_LOCATION, but CompanionDeviceManager not?

Starting with Android 6(?) your app needs the ACCESS_FINE_LOCATION permission and the user has to turn on the system-wide location setting in order to scan for Bluetooth devices from the app: https://stackoverflow.com/questions...-bluetooth-low-energy-scanning-on-android-6-0
Google is arguing that you could use just the Bluetooth data to find the location of the phone and thus hid Bluetooth scanning behind the location permission. (Which my opinion is ridiculous because they could have added a separate permission instead of forcing the user to give up all their battery life to GPS and WiFi location tracking.)
Now with Android 8 there appears to be a new API, namely the CompanionDeviceManager:
https://developer.android.com/guide/topics/connectivity/companion-device-pairing
This API only seems to require adding the FEATURE_COMPANION_DEVICE_SETUP feature to the manifest, but yet it allows scanning for Bluetooth devices, even with the system-wide location setting turned off.
Now I'm wondering if that API is somehow anonymizing the Bluetooth data, e.g. by removing the MAC addresses or what else could be the reason for why Google thinks that this does not need to be hidden behind the location permissions?
No one?
Any suggestions on other forums where people might be able to help me?
Don't think anyone here can answer your question.
Damn... I was really hoping to find an anser to this. :/

Categories

Resources