[Q] ? about Imoseyon lean kernel - Thunderbolt Q&A, Help & Troubleshooting

I'm running Liquid Smooth 3.2 with Imoseyon Lean 6.2.1 kernel. I also tried to activate the speed tweaks included (?) but it didn't work so I downloaded speed tweaks 7.1 from Imoseyon's website and flashed it.
This is my problem.. I understand that with this kernel USB fast charging works unless the battery temp gets too high, then it shuts off and I assume goes back to standard charging. I've been using the kernel for about six hours and the battery temp has been in the low to mid thirties mostly, so that's great.. But my voltage has gotten up slightly over 4200 a couple of times and that has driven the battery temp up, but not much. I use a battery monitor widget that sounds an alarm if the temp or voltage get outside of my defined ranges.
What I would like to know whether there is a way to keep the voltage in a safer range when the phone is fast charging? I think if the fast charge could be stopped when the voltage is above 4200 or below 3000 like it is when the battery temp gets too high would be a great feature, and it would ease my mind that the voltage won't spike to 4300 or 4400 and blow up while I'm sleeping at night (if I happen to not hear battery monitor alarm).
If that's just the way it is with the voltage spikes, does anyone maybe know of a kernel/rom combo that safely allows fast charging by keeping the battery temp and voltage in recommended ranges or by shutting fast charge off if the temp/voltage suddenly spike while on the charger?
Thanks for reading/considering my question.

I'm not 100% sure but isn't the reason fast changing works is because it bumps up he voltage. Wouldn't lowering it make it not charge as fast.
Sent from my ADR6400L using Tapatalk 2

Not sure
I looked at my battery history and I think you're right. The voltage has spiked quickly and then steadily climbed past 4200, but the charge in that time frame is like 60+ percent so it's worth it I guess. Figure I'm hurting the battery, but for now it's worth it. I I may get an iphone 5 if the features are right.
I guess I'll just have to find a toggle so I can leave it on the charger at night and not have to worry about it catching fire. Just out of curiosity, does anyone know about how long a lithium battery can charge above 4200 or below 3000 before it blows up?
Also, this is my first phone with a 4.3 inch screen.. Do all big display phones suffer from terrible battery life? I keep my brightness down to about 20% indoors, but I generally keep 4g on because 3g tends to drop the signal and I play Pokerist a lot at work. Don't like getting kicked off and having to sign back in when I'm all in in a hand. I guess it also could be that the game is taxing the processor and in combination with 4g wrecking my battery life.. Mainly though, and on a custom rom without a fast usb charging feature, I couldn't play and charge at the same time, the phone would just barely stay at the percentage it was at. My last question is, does anyone know of a phone with a large display and 4g that doesn't drain the battery as quickly as Thunderbolt, or that at least charges fairly fast while using phone without having to flash a fast usb charging kernel?
edit: I can't find an app or widget that will allow me to toggle between normal charging and fast usb charging.. Anyone know of one for Thunderbolt?

Most of the new 4G phones with the 4.3 inch screen suffer from batter drain. The razr maxx is the best stock phone for battery right now but the phones just aren't built well. I think the newer phones are getting better so I would wait a little while longer and see what is coming out soon. The battery issue won't be a problem forever and neither will the crappy data drops.
Sent from my ADR6400L using Tapatalk 2

The spike in voltage and temperature is a NORMAL behavior of this type of battery and the charging technology it uses. As a Li-on battery discharges, it's voltage drops very little for it's corresponding level of charge (Very useful in small electronics that require excellent power consistency.). As the battery nears fully discharged, the voltage begins to drop sharply as does the resistance of the battery. Shortly after that, the internal temperature rises. You are now damaging your battery to further discharge it. You're phone won't let you do this. Likewise, it won't allow you to overcharge it. A Li-on battery is determined to be fully charged when the voltage output begins to rise sharply over the nominal charge rate. The internal resistance of the battery will rise sharply as well. The you'll notice temperature rise. Depending upon other conditions, a significant rise in cell temperature doesn't necessarily indicate a charged battery. If the resistance and voltage are consistent, the battery isn't fully charged but rather exhibiting the normal rise in temperature as resistance rises. You'd be pretty shocked how hot it really has to get before the phone will simply shut itself off and refuse to power up for half an hour or more to avoid actually damaging the battery due to thermal stress. Think hot, dark stone sitting in the hot sun all day long. And that cut-off, as far as I know, is below what the battery is actually rated for.
You're HTC device uses neither voltage, resistance, nor temperature independently to determine a charged or discharged state. That is calculated through compiled statistics based upon load, voltage output, resistance, and temperature. Li-on is a very well understood technology. The ONLY way to obtain the life and performance from these batteries that they do is to have fairly advanced charging and monitoring technology. It's really pretty hard to destroy a phone or it's battery strictly through heat generated by charging (assuming all parts meet spec.). In fact, it's hard to even if the phone is sitting on a heating vent or under the hot sunlight.
Unless you're device is some brutally overclocked, customized to the gills monster of a device, narrowly switching transistors at ridiculous speeds with precious few electrons to spare, you're pretty hard pressed to damage your battery or your phone. The stuff that manages the battery is beyond what kernels and ROMs do. You can definitely do some meaningful damage to a battery messing with charge characteristics, however catastrophic failure is practically impossible.

Related

Over charging

Im curious. I work for Verizon and when we sell phones we normally recommend customers to unplug there phone once it is fully charged. Im curious to know if anyone has a reference that states this whether or not this is fact or fiction. I've heard and would think that the manufacturers would prevent this from happening, but I am not sure if that is the case. Does anyone have more information regarding this charging process?
I would rather burn my phone up than deal with unplugging it after it is charged. And no, you don't have to.
Sent from my ThunderBolt using XDA App
Most batteries have built in safety measures to prevent over charging
Sent from my ADR6400L using XDA App
NavyKwonMA said:
Most batteries have built in safety measures to prevent over charging
Sent from my ADR6400L using XDA App
Click to expand...
Click to collapse
This is why when you unplug it you lose 5% almost instantly. It charges to 100% then lets it die down to 95% and repeats.
Thanks for the replies. The information given was helpful. Im still curious if anyone can provide a legitimate reference to this information though. A link of some sort would be awesome.
Over in the dInc forum someone put together a big set of charts relating to how that phone charges. It's battery technology is identical to the Tbolt so I assume it would apply. In short, no, you cannot overcharge the phone. What's damaging to the phone is being left in a fully, or nearly fully charged state for extended portions of the battery's life. The ideal long-term storage charge for a Lithium polymer battery is basically the charge that it comes with from the factory.
From all that I've read....
Lithium Ion/polymer batteries have top and bottom thresholds for min and max charge. Below a point, the materials become damaged, and above a point, they become damaged as well. This is unlike a car battery where you can basically suck nearly every volt out of it then recharge it like new. A lithium battery yields only about 1/2 to 1/3 of it's total charge before it's technically "dead". And the voltage drop relative to charge state isn't linear either. Over the useful life of the battery, the voltage drop is relatively slight. Once it begins to drop off more sharply, it's displaying characteristics of being "dead". A lithium battery is assumed to be fully charged when one of 2 things happens; the temperature begins to rise under an unchanged charge input, or the voltage/resistance inside the battery begins to rise. The latter is the method HTC devices use because it largely eliminates the environmental variable of temperature which can vary wildly between a purse, a hot car, an ice arena, or an air conditioned home. Additionally, circuitry is installed on the battery itself to prevent an overcharge state and over-temperature state because these two conditions can easily cause the battery to explode. And lithium will react violently to any form of moisture.... like your skin. The internal circuitry also includes a fuse which will destroy the battery by breaking the contact the internal cells have with external circuitry in the even of moisture saturation due to the risk of thermal runaway my means of short circuit.
As users of HTC devices, or any Li-Io devices may notice, unplugging immediately after charging is complete will prevent a sudden drop off in available battery percentage. This is because the charge has stopped and will not begin again until a min threshold has been reached, usually around 95%. This isn't a flaw with the battery, phone or charger. Tiamat kernels come in forms that will prevent this, but will damage the life of the battery in doing so.
ziggy471.com has some good info on these batteries, as does the thread in the dInc forum. Not sure exactly what forum or thread over there, but a quick search should yield it.
And that's pretty much all I can tell you about lithium-polymer batteries!
brizey said:
I would rather burn my phone up than deal with unplugging it after it is charged. And no, you don't have to.
Sent from my ThunderBolt using XDA App
Click to expand...
Click to collapse
I guess this would be OK if I had money to throw away. Buying batteries can get very expensive. One of my main reasons forvthinking overcharging is very possible was because I have noticed that when my phone is plugged in and I am using it, it tends to get very hot. From my understanding, while the phone is charging the current causes the batteries cells to heat up, which creates the charge. Once the battery is fully charged I assumed the cells were still being heated up which causes the higher temperature. I also assumed thatvthis could burn the cells up in the battery.
loonatik78 said:
Over in the dInc forum someone put together a big set of charts relating to how that phone charges. It's battery technology is identical to the Tbolt so I assume it would apply. In short, no, you cannot overcharge the phone. What's damaging to the phone is being left in a fully, or nearly fully charged state for extended portions of the battery's life. The ideal long-term storage charge for a Lithium polymer battery is basically the charge that it comes with from the factory.
From all that I've read....
Lithium Ion/polymer batteries have top and bottom thresholds for min and max charge. Below a point, the materials become damaged, and above a point, they become damaged as well. This is unlike a car battery where you can basically suck nearly every volt out of it then recharge it like new. A lithium battery yields only about 1/2 to 1/3 of it's total charge before it's technically "dead". And the voltage drop relative to charge state isn't linear either. Over the useful life of the battery, the voltage drop is relatively slight. Once it begins to drop off more sharply, it's displaying characteristics of being "dead". A lithium battery is assumed to be fully charged when one of 2 things happens; the temperature begins to rise under an unchanged charge input, or the voltage/resistance inside the battery begins to rise. The latter is the method HTC devices use because it largely eliminates the environmental variable of temperature which can vary wildly between a purse, a hot car, an ice arena, or an air conditioned home. Additionally, circuitry is installed on the battery itself to prevent an overcharge state and over-temperature state because these two conditions can easily cause the battery to explode. And lithium will react violently to any form of moisture.... like your skin. The internal circuitry also includes a fuse which will destroy the battery by breaking the contact the internal cells have with external circuitry in the even of moisture saturation due to the risk of thermal runaway my means of short circuit.
As users of HTC devices, or any Li-Io devices may notice, unplugging immediately after charging is complete will prevent a sudden drop off in available battery percentage. This is because the charge has stopped and will not begin again until a min threshold has been reached, usually around 95%. This isn't a flaw with the battery, phone or charger. Tiamat kernels come in forms that will prevent this, but will damage the life of the battery in doing so.
ziggy471.com has some good info on these batteries, as does the thread in the dInc forum. Not sure exactly what forum or thread over there, but a quick search should yield it.
And that's pretty much all I can tell you about lithium-polymer batteries!
Click to expand...
Click to collapse
Thanks, that was very informational.
_Stomp_ said:
I guess this would be OK if I had money to throw away. Buying batteries can get very expensive. One of my main reasons forvthinking overcharging is very possible was because I have noticed that when my phone is plugged in and I am using it, it tends to get very hot. From my understanding, while the phone is charging the current causes the batteries cells to heat up, which creates the charge. Once the battery is fully charged I assumed the cells were still being heated up which causes the higher temperature. I also assumed thatvthis could burn the cells up in the battery.
Click to expand...
Click to collapse
The device will switch off before damage to the battery is done. I've done it repeated with a couple phones.
Li polymer batteries generate heat as energy is puller from them at a high rate. So if you watch a movie on your phone or have some other program running for extended periods it will get hot. Also if you expose it to oxygen the polymer get high unstable and extremely hot. That's why they tell you not to puncture them. Remember kids in apocalypse time Li ion batteries make great fire starters.
Sent from my ThunderBolt using XDA Premium App
mcpo117 said:
Li polymer batteries generate heat as energy is puller from them at a high rate. So if you watch a movie on your phone or have some other program running for extended periods it will get hot. Also if you expose it to oxygen the polymer get high unstable and extremely hot. That's why they tell you not to puncture them. Remember kids in apocalypse time Li ion batteries make great fire starters.
Sent from my ThunderBolt using XDA Premium App
Click to expand...
Click to collapse
So do magnesium motorcycle clutch covers!

[Q] Are there any downsides to charging at a faster rate than stock?

I've noticed many roms provide options to charge at a faster rate, many have by default now.
Just looking at CheckRom, I see that it states "(for AC: up to 1200mA, for USB: up to 900mA)". Is there any real downside to using these? Such as shortening battery life.
I have been wondering about this for awhile. Thanks.
I'm sure I read somewhere that it will only use the milliamp that is supported by the battery. Also if it charges faster it shouldn't be a problem since its using the correct power input
Sent from my GT-I9300 using xda premium
Faster charging equivalents more strain on the battery and thus a shorter life in terms of charge/discharge cycles.
Since the battery is replaceble, it may well be worth the few dollars to you to have it charge faster, but that's personal preference.
Quick-charging batteries leads to additional heat, I would thus not recommend it if you plan to leave it charging in a car in the summer
since that will cause even further strain. (It's very unlikely the battery could go in self-heat mode due to charging)
Actually NO, but charging with more than 1A which is stock/default will add more heat to your phone. Heat which is HOT not WARM will reduce battery life of rechargeable batteries.
Oh right, very neat. I plan to get one of those high capacity batteries (tad over twice of original) for $15.
Does anyone know if it can also reduce battery life leaving it on charge all night? I think it discontinues charging.
krisando said:
Oh right, very neat. I plan to get one of those high capacity batteries (tad over twice of original) for $15.
Does anyone know if it can also reduce battery life leaving it on charge all night? I think it discontinues charging.
Click to expand...
Click to collapse
As every one said charging at higher rate will reduce battery life and also reduce back up time.
Secondly, leaving charger ON all night will not effect battery, because charging is cut off by internal circuit once battery is fully charged.

Overheating

Just a little process of elimination on the overheating issues.
To be clear: I don't have the issue of continuous overheating when nothing seems active.
I do have a problem with it overheating when playing games or streaming.
Also the overheating and drain is so bad that the battery will drain even while plugged in during this time.
so, do you have the same problem?
To keep the results consistent please test with this scenario:
Play Asphalt 7 until it heats up noticeably. Then plug it in and note your charge level. Now play some more and see if your battery drains.
I think the overheating and faster battery drain is normal.
For example if the CPU and GPU need 10W to render such intensive game at 24fps and your charger can supply only 5W (5 Volts * 1 Amps) then you have battery drain, not charge.
Try charging your phone with charger that can supply 2A (usually phone chargers are 1A), then you might actually charge your phone while playing this lovely game.
The whole point of this poll is to determine what is"normal" so we don't have to come up with theories.
BTW: I have never seen this happen on an iPhone or Android as manufacturers usually engineer their components to accommodate.
I haven't played Asphalt, but some other games, and yes, the phone overheated, there was no battery drain, BUT the battery was charging significantly slower.
Using 3rd party navigation apps like "Navigation 3D" and "GPS Voice Navigation" overheat a lot the phone and the battery drains in a couple of hours from full charge.
Also with my 500mAh car charger the phone drains with these apps.
Overheating for me is when the phone gets so hot that it will shutdown to prevent damage.. or is damaged...
Did your phone gets hot or is it really overheating???
Phones can get really hot when you combine some of this things:
-Charge
-use wifi
-use heavy apps (navigation) or gaming
-stream or watch videos
-have your screen on full brightness
-use it in heavy direct sunlight (like in the car)
the more things you combine simultaneously the hotter your phone will get...
Ikkari said:
Overheating for me is when the phone gets so hot that it will shutdown to prevent damage.. or is damaged...
Did your phone gets hot or is it really overheating???
Phones can get really hot when you combine some of this things:
-Charge
-use wifi
-use heavy apps (navigation) or gaming
-stream or watch videos
-have your screen on full brightness
-use it in heavy direct sunlight (like in the car)
the more things you combine simultaneously the hotter your phone will get...
Click to expand...
Click to collapse
According to the poll so far: 40% of phones don't overheat and 20% don't have the voltage drain.
If 100% of phones behaved the the same then it would be easy to accept that this is normal behavior.
But I'll keep sending mine back until I get one that works.
the term overheating implies that the device stop functioning
running hot would be a less confusing and more appropriate terms. All electronic devices run hot under prolonged load, laptops, tablets, ipods, it's par for the course.
Obviously I didn't mean that malfunctioning is normal. I agree "Running hot" is more appropriate term..
Sent from my Lumia 920 using Board Express
What I'm trying to do is provide a baseline acceptable level so we know what overheating is.
I already know that something is wrong when the provided charger cannot charge the phone and the and the heat level is uncomfortable.
Overheating is: anything that is beyond the designed run temperature threshold -which we don't know but can discern through collaboration.
Well through logical deduction on could come to the following conclusion. Phone does not charge with provided charger, phone get uncomfortably warm, there is only one thing in the phone that can generate that heat and that is the battery. It is a Lithium Polymer battery and they are notorious in any device for having workmanship issues. Since it won't charge that points to the battery even more. I would take it in and have them change the battery since it is a major undertaking for a regular user. Or just exchange the device. Just tell them you afraid it is going to cause a fire.

Note 7 and Lithium Batteries. An Educational thread.

I am seeing too many battery misconceptions. Let me clear them up.
STORAGE:
Lithium batteries like to sit around 50% for prolonged periods. If you need to power down your phone and store it, do it around 50-60%.
STATE OF CHAGE / BATTERY LEVEL
- It will NOT hurt to keep your phone on the charger. The charging circuitry cuts off power once the Cell hits 4.35 - 4.4v (If it did not, your battery would swell and heat up and then explode or catch on fire or both)
- It is MUCH more harmful to deplete the battery than it is to keep it full. Lithium batteries DO NOT like to go below a certain voltage depending on specific chemistry formulation.
For Example: Chevy Volt electric car Lithium battery is set to stay within 30% - 80%. They are limited to never exceed an SOC of 80% and never go below 30%. Source: https://en.wikipedia.org/wiki/Chevrolet_Volt
To expand on this. It is BETTER to keep the phone at 95% than it is to keep it at 5% for example. I personally would NOT want my battery falling low enough that it gives a low battery indication (usually around 15%). Usually I do not want it hitting 30%. That's a good rule imho.
CHARGE AND DISCHARGE CURRENT
Lithium batteries prefer to be charged slowly and discharged slowly. They do NOT like high charge and drain.
You guessed it. AVOID high charge scenarios such as Fast Charge. AVOID fast discharge scenarios such as gaming with high brightness etc.
TEMPRATURE
Lithium batteries do not like getting hot. They don't even like getting warm. Getting hot hurts it. Getting warm isn't as bad but it DOES degrade the total capacity over time.
Again, this is usually caused due to high charge or discharge scenarios.
It also ties in with Fast charge, wireless charge and especially wireless fast charge. Wireless charging is not efficient and energy as wasted as heat.
Personally I disable fast charge and do not use wireless charging. Good old USB Type C already charges quickly enough for me.
TLDR: Disable Fast Charge. Try to use USB Type C charging instead of wireless charging. Disable stuff you don't actually use. Try to keep power save on even if using it with very little power saving settings. Try to keep brightness at a reasonable level and not too high (This reduces AMOLED degradation too).
Remember: THE BATTERY IS NOT EASILY REPLACEABLE IN THE NOTE 7 !!!!!!!! Therefore the more you baby it, the longer it will hold it's charge and the lower the chance of the battery going bad.
My old Notes (Note 2 and Note 4) both still have VERY good original batteries because they were well taken of.
Good luck !
But I like fast charging and wireless charging lol
Ironic that when your phone is new, this is when the battery gets hot and used a lot. Perhaps with the water resistant phones we should update the firmware and restore the backup under water to keep the phone cool!
I will be sure to disregard just about everything in here. Guy is spreading false panic.
Actually "store mode" example: found in 7420 kernel source is 60-70% capacity. There are a lot of checks within source including battery swell etc. Don't fret about things, use your device. It's not as delicate as you may think. Who cares about the efficiency of wireless charging. Great if you've got it
90% won't keep beyond 2 years, just enjoy the thing !!
UN-recognized Developer of my SkyHigh Kernel v5.8.x powered SM-N920C
UpInTheAir said:
Actually "store mode" example: found in 7420 kernel source is 60-70% capacity. There are a lot of checks within source including battery swell etc. Don't fret about things, use your device. It's not as delicate as you may think. Who cares about the efficiency of wireless charging. Great if you've got it
90% won't keep beyond 2 years, just enjoy the thing !!
UN-recognized Developer of my SkyHigh Kernel v5.8.x powered SM-N920C
Click to expand...
Click to collapse
My device arrived at 59% charge, ties in with what you say about storage.

[GUIDE]How to avoid battery degradation. Keep it as new for years.

I have been reading these days that some of you are starting to replace the battery of the Axon 7 after 1.5-2 years. This is something we all have experienced with phones, laptops, wireless devices, etc. About 2 years ago I researched on batteries and finally discovered how to avoid the degradation in Lithium-Ion batteries. I have applied it to my Dell XPS 13 Laptop and my Axon 7 with excellent results. Due to the recent proliferation of battery replacement I think this guide can be useful to extend the useful life of your battery.
Battery wear is something that can be reduced to almost nothing with proper charging habits. But there are some urban legends out there completely false. Lets review all them:
Do NEVER charge it over 90%: TRUE. The battery wears a lot when charging the last 10%. actually charging up to 90% takes about 10% of a degradation cycle while the last 10% takes 90% of the degradation cycle. Charging to 90%, only this trick, can reduce the wear of your battery to 1/10 or even more if you stop at 80%. I use to stop at 84%.
Do NEVER drain your battery completely: TRUE. The high current required to pull the energy stored in the battery when the level is so low requires more time per energy unit and that initial 10% wears the battery excessively. So taking care of that will save your battery too. I use to set low battery mode at 15% but I always avoid being so low. Please note that leaving the battery drained for too long can make it impossible to charge. IMPORTANT: If you are not going to use a device for some time, leave battery between 40-70%, not more, not less. If you do not do that, you can have an ugly surprise in case you need it again.
Quick Charge is bad for batteries: FALSE. It is actually the opposite. QC is a lot healthier since the battery is not heated for a long time. Heat is a problem too for the battery. So, try to avoid old charging units as possible and use only QC 3.0 chargers for car and home as much as possible.
Short charging sessions damage the battery: FALSE. A number of small charging sessions in the healthy region between 20-80% battery level is healthier than a long session for several reasons, the most important is that the battery temperature never rises that much.
I have been doing this in my devices and my Axon 7 retains the same energy storage as new after 18 months of healthy charging habits. These advises are also applicable to laptops and any other device using a Li-ion battery. As you can see, leaving your phone plugged at night will kill your battery very quickly the same way a laptop battery wears quickly when left plugged. I am lucky my Dell XPS 13 has a battery control software/firmware that allows charging to stop at a desired value automatically so I can have it plugged without actually charging. I was looking for a similar solution for the Axon 7 and I found it some time ago.
It was very annoying being on top of the device taking care of the battery level when charging. There are some apps out there that monitors the battery level while charging and signal an alarm when the desired maximum charge level is reached. But we are lucky!!!! The latest Custom Oreo Kernels for the Axon 7 support the charging_enable switch and we can use now Battery Charge Limit App to modify the max battery value. Two main values can be set, the max allowed charge and the recharge level. The first one is the most interesting since the charging will stop at that level. I have 84% set here but any value between 80%-90% is safe and healthy for your battery. The second value tells the system to avoid starting a charging session if the value is still above the second threshold. It is designed to avoid rapid charge/discharge sessions. Usually a value between 4-8% under the max value is safe and healthy. I have this second value set to 79%.
With this daemon your battery will never reach 100% and with it you will avoid excessive battery degradation. It worked for me so I hope you could benefit of it too. On the other side, just avoid drain your battery too much and do not fear short charging sessions during your car commuting time or while in the shower, etc... These little tricks sum and you will save the money and damages in your unit replacing a battery you probably could have avoided with proper battery care.
Cheers!!!!
Some are not false urban legends at all. On the contrary I see lots of false claims with no source evidence.
Limiting by percentage still allows the battery voltage to reach higher shorter lifespan voltage. See that limit apps thread for discussion on limiting by voltage through Tasker instead. Further do you know what voltage that percentage idles at? It varies by device implementation setup.
Here's some information on voltage level health.
"Additionally, when the cathode voltage rises past 4.2 V, the electrolyte begins to oxidize (and ultimately decompose). This effectively limits present-day lithium-ion batteries to a maximum voltage of 4.35 V with the understanding that the “bad stuff” begins to occur past 4.0 V, and becomes unsafe past 4.35 V."
https://qnovo.com/why-battery-vendors-are-hitting-the-wall
Got a reliable source for quick charge not harming battery life? I've only seen marketing material and such claims repeated but not any research or scientific sources.
Sent from my ZTE Axon 7 using XDA Labs
Infy_AsiX said:
Some are not false urban legends at all. On the contrary I see lots of false claims with no source evidence.
Limiting by percentage still allows the battery voltage to reach higher shorter lifespan voltage. See that limit apps thread for discussion on limiting by voltage through Tasker instead. Further do you know what voltage that percentage idles at? It varies by device implementation setup.
Here's some information on voltage level health.
"Additionally, when the cathode voltage rises past 4.2 V, the electrolyte begins to oxidize (and ultimately decompose). This effectively limits present-day lithium-ion batteries to a maximum voltage of 4.35 V with the understanding that the “bad stuff” begins to occur past 4.0 V, and becomes unsafe past 4.35 V."
https://qnovo.com/why-battery-vendors-are-hitting-the-wall
Got a reliable source for quick charge not harming battery life? I've only seen marketing material and such claims repeated but not any research or scientific sources.
Click to expand...
Click to collapse
Thanks for the info. However it is not easy to control the voltage of the cathode and the OP guide tries to use the available tools.
If you never fully charge how would you know if it's capacity is still near maximum?
I've kind of followed this idea for a while now ..
I always charge to a full 100% but never let the battery go completely flat ...
My Moto G is still running the same battery from new ...
My Axon 7 running Oreo is getting 4 days before it needs to be charged at normal usage..(recharge @ 15%) at the end of day 4
I get 6 days in standby
Oki said:
Quick Charge is bad for batteries: FALSE
Click to expand...
Click to collapse
I switched to old weaker chargers (0.5 - 1.0 amp) as there's almost no noticeable heat at all while charging, and I've found this extends the battery life as well. If any/all heat is bad, then aren't short bursts of high heat (3.0 amp QC) worse than long periods of little/no heat (0.5 - 1.0 amp) ?
Sure...
Most all of those "tips" are hogwash.
Modern day charging is handled by the phone. If there's something that hacked that algorithm in my phone, then so be it. :fingers-crossed:
Few years ago I did some research on Lithium-Ion batteries (which behave differently from other kind of batteries, such as lead acid ones for example) and I second all the conclusions by OP. If you are interested on the matter and to understand how batteries work, check this site: https://batteryuniversity.com/learn/ the explanations are crystal clear.
Disclaimer: I have no whatsoever association with the website.

Categories

Resources